diff --git a/EvaluationContexts.v b/EvaluationContexts.v index 06e1721..a5b0c13 100644 --- a/EvaluationContexts.v +++ b/EvaluationContexts.v @@ -861,6 +861,351 @@ Module StlcSums. Qed. End StlcSums. +(** * Exceptions *) + +(* Evaluation contexts are very helpful for concise modeling of control-flow + * constructs like exceptions. Let's look at an example where exceptions are + * just numbers, for simplicity. *) + +Module StlcExceptions. + Inductive exp : Set := + | Var (x : var) + | Const (n : nat) + | Plus (e1 e2 : exp) + | Abs (x : var) (e1 : exp) + | App (e1 e2 : exp) + | Pair (e1 e2 : exp) + | Fst (e1 : exp) + | Snd (e2 : exp) + | Inl (e1 : exp) + | Inr (e2 : exp) + | Match (e' : exp) (x1 : var) (e1 : exp) (x2 : var) (e2 : exp) + + | Throw (e1 : exp) + | Catch (e1 : exp) (x : var) (e2 : exp). + (* The last one roughly means "try e1 catch x => e2". *) + + Inductive value : exp -> Prop := + | VConst : forall n, value (Const n) + | VAbs : forall x e1, value (Abs x e1) + | VPair : forall v1 v2, value v1 -> value v2 -> value (Pair v1 v2) + | VInl : forall v, value v -> value (Inl v) + | VInr : forall v, value v -> value (Inr v). + + Fixpoint subst (e1 : exp) (x : string) (e2 : exp) : exp := + match e2 with + | Var y => if y ==v x then e1 else Var y + | Const n => Const n + | Plus e2' e2'' => Plus (subst e1 x e2') (subst e1 x e2'') + | Abs y e2' => Abs y (if y ==v x then e2' else subst e1 x e2') + | App e2' e2'' => App (subst e1 x e2') (subst e1 x e2'') + | Pair e2' e2'' => Pair (subst e1 x e2') (subst e1 x e2'') + | Fst e2' => Fst (subst e1 x e2') + | Snd e2' => Snd (subst e1 x e2') + | Inl e2' => Inl (subst e1 x e2') + | Inr e2' => Inr (subst e1 x e2') + | Match e2' x1 e21 x2 e22 => Match (subst e1 x e2') + x1 (if x1 ==v x then e21 else subst e1 x e21) + x2 (if x2 ==v x then e22 else subst e1 x e22) + + (* New cases: *) + | Throw e2' => Throw (subst e1 x e2') + | Catch e2' x1 e2'' => Catch (subst e1 x e2') + x1 (if x1 ==v x then e2'' else subst e1 x e2'') + end. + + Inductive context : Set := + | Hole : context + | Plus1 : context -> exp -> context + | Plus2 : exp -> context -> context + | App1 : context -> exp -> context + | App2 : exp -> context -> context + | Pair1 : context -> exp -> context + | Pair2 : exp -> context -> context + | Fst1 : context -> context + | Snd1 : context -> context + | Inl1 : context -> context + | Inr1 : context -> context + | Match1 : context -> var -> exp -> var -> exp -> context + + (* New cases: *) + | Throw1 : context -> context + | Catch1 : context -> var -> exp -> context. + + (* We modify [plug] with a new Boolean argument, to control whether [Catch1] + * context kinds are allowed. *) + Inductive plug : bool -> context -> exp -> exp -> Prop := + | PlugHole : forall ac e, plug ac Hole e e + | PlugPlus1 : forall ac e e' C e2, + plug ac C e e' + -> plug ac (Plus1 C e2) e (Plus e' e2) + | PlugPlus2 : forall ac e e' v1 C, + value v1 + -> plug ac C e e' + -> plug ac (Plus2 v1 C) e (Plus v1 e') + | PlugApp1 : forall ac e e' C e2, + plug ac C e e' + -> plug ac (App1 C e2) e (App e' e2) + | PlugApp2 : forall ac e e' v1 C, + value v1 + -> plug ac C e e' + -> plug ac (App2 v1 C) e (App v1 e') + | PlugPair1 : forall ac e e' C e2, + plug ac C e e' + -> plug ac (Pair1 C e2) e (Pair e' e2) + | PlugPair2 : forall ac e e' v1 C, + value v1 + -> plug ac C e e' + -> plug ac (Pair2 v1 C) e (Pair v1 e') + | PlugFst1 : forall ac e e' C, + plug ac C e e' + -> plug ac (Fst1 C) e (Fst e') + | PlugSnd1 : forall ac e e' C, + plug ac C e e' + -> plug ac (Snd1 C) e (Snd e') + | PlugInl1 : forall ac e e' C, + plug ac C e e' + -> plug ac (Inl1 C) e (Inl e') + | PlugInr1 : forall ac e e' C, + plug ac C e e' + -> plug ac (Inr1 C) e (Inr e') + | PluMatch1 : forall ac e e' C x1 e1 x2 e2, + plug ac C e e' + -> plug ac (Match1 C x1 e1 x2 e2) e (Match e' x1 e1 x2 e2) + | PlugThrow1 : forall ac e e' C, + plug ac C e e' + -> plug ac (Throw1 C) e (Throw e') + | PlugCatch1 : forall e e' C x1 e1, + plug true C e e' + -> plug true (Catch1 C x1 e1) e (Catch e' x1 e1). + + Inductive step0 : exp -> exp -> Prop := + | Beta : forall x e v, + value v + -> step0 (App (Abs x e) v) (subst v x e) + | Add : forall n1 n2, + step0 (Plus (Const n1) (Const n2)) (Const (n1 + n2)) + | FstPair : forall v1 v2, + value v1 + -> value v2 + -> step0 (Fst (Pair v1 v2)) v1 + | SndPair : forall v1 v2, + value v1 + -> value v2 + -> step0 (Snd (Pair v1 v2)) v2 + | MatchInl : forall v x1 e1 x2 e2, + value v + -> step0 (Match (Inl v) x1 e1 x2 e2) (subst v x1 e1) + | MatchInr : forall v x1 e1 x2 e2, + value v + -> step0 (Match (Inr v) x1 e1 x2 e2) (subst v x2 e2) + + | ThrowBubble : forall v C e, + plug false C (Throw v) e + -> value v + -> C <> Hole + -> step0 e (Throw v) + | CatchValue : forall v x1 e1, + value v + -> step0 (Catch v x1 e1) v + | CatchThrow : forall v x1 e1, + value v + -> step0 (Catch (Throw v) x1 e1) (subst v x1 e1). + + Inductive step : exp -> exp -> Prop := + | StepRule : forall C e1 e2 e1' e2', + plug true C e1 e1' + -> plug true C e2 e2' + -> step0 e1 e2 + -> step e1' e2'. + + Definition trsys_of (e : exp) := {| + Initial := {e}; + Step := step + |}. + + + Inductive type := + | Nat + | Fun (dom ran : type) + | Prod (t1 t2 : type) + | Sum (t1 t2 : type). + + Inductive hasty : fmap var type -> exp -> type -> Prop := + | HtVar : forall G x t, + G $? x = Some t + -> hasty G (Var x) t + | HtConst : forall G n, + hasty G (Const n) Nat + | HtPlus : forall G e1 e2, + hasty G e1 Nat + -> hasty G e2 Nat + -> hasty G (Plus e1 e2) Nat + | HtAbs : forall G x e1 t1 t2, + hasty (G $+ (x, t1)) e1 t2 + -> hasty G (Abs x e1) (Fun t1 t2) + | HtApp : forall G e1 e2 t1 t2, + hasty G e1 (Fun t1 t2) + -> hasty G e2 t1 + -> hasty G (App e1 e2) t2 + | HtPair : forall G e1 e2 t1 t2, + hasty G e1 t1 + -> hasty G e2 t2 + -> hasty G (Pair e1 e2) (Prod t1 t2) + | HtFst : forall G e1 t1 t2, + hasty G e1 (Prod t1 t2) + -> hasty G (Fst e1) t1 + | HtSnd : forall G e1 t1 t2, + hasty G e1 (Prod t1 t2) + -> hasty G (Snd e1) t2 + | HtInl : forall G e1 t1 t2, + hasty G e1 t1 + -> hasty G (Inl e1) (Sum t1 t2) + | HtInr : forall G e1 t1 t2, + hasty G e1 t2 + -> hasty G (Inr e1) (Sum t1 t2) + | HtMatch : forall G e t1 t2 x1 e1 x2 e2 t, + hasty G e (Sum t1 t2) + -> hasty (G $+ (x1, t1)) e1 t + -> hasty (G $+ (x2, t2)) e2 t + -> hasty G (Match e x1 e1 x2 e2) t + + (* New cases: *) + | HtThrow : forall G e1 t, + hasty G e1 Nat + -> hasty G (Throw e1) t + | HtCatch : forall G e x1 e1 t, + hasty G e t + -> hasty (G $+ (x1, Nat)) e1 t + -> hasty G (Catch e x1 e1) t. + + Local Hint Constructors value plug step0 step hasty : core. + + Ltac t0 := match goal with + | [ H : ex _ |- _ ] => invert H + | [ H : _ /\ _ |- _ ] => invert H + | [ |- context[?x ==v ?y] ] => cases (x ==v y) + | [ H : Some _ = Some _ |- _ ] => invert H + + | [ H : step _ _ |- _ ] => invert H + | [ H : step0 _ _ |- _ ] => invert1 H + | [ H : hasty _ ?e _, H' : value ?e |- _ ] => invert H'; invert H; [] + + | [ H : hasty _ ?e _, H' : value ?e |- _ ] => invert H'; invert H; [|] + + | [ H : hasty _ _ _ |- _ ] => invert1 H + | [ H : plug _ _ _ _ |- _ ] => invert1 H (* added an underscore *) + end; subst. + + Ltac t := simplify; propositional; repeat (t0; simplify); try equality; eauto 7. + + Local Hint Extern 1 (_ <> Hole) => equality : core. + + Lemma progress : forall e t, + hasty $0 e t + -> value e + \/ (exists n : nat, e = Throw (Const n)) + \/ (exists e' : exp, step e e'). + Proof. + induct 1; t. + Qed. + + Lemma weakening_override : forall (G G' : fmap var type) x t, + (forall x' t', G $? x' = Some t' -> G' $? x' = Some t') + -> (forall x' t', G $+ (x, t) $? x' = Some t' + -> G' $+ (x, t) $? x' = Some t'). + Proof. + simplify. + cases (x ==v x'); simplify; eauto. + Qed. + + Local Hint Resolve weakening_override : core. + + Lemma weakening : forall G e t, + hasty G e t + -> forall G', (forall x t, G $? x = Some t -> G' $? x = Some t) + -> hasty G' e t. + Proof. + induct 1; t. + Qed. + + Local Hint Resolve weakening : core. + + (* Replacing a typing context with an equal one has no effect (useful to guide + * proof search as a hint). *) + Lemma hasty_change : forall G e t, + hasty G e t + -> forall G', G' = G + -> hasty G' e t. + Proof. + t. + Qed. + + Local Hint Resolve hasty_change : core. + + Lemma substitution : forall G x t' e t e', + hasty (G $+ (x, t')) e t + -> hasty $0 e' t' + -> hasty G (subst e' x e) t. + Proof. + induct 1; t. + Qed. + + Local Hint Resolve substitution : core. + + Lemma throw_well_typed : forall C v e, + plug false C (Throw v) e + -> forall t, hasty $0 e t + -> hasty $0 v Nat. + Proof. + induct 1; invert 1; t. + Qed. + + Local Hint Resolve throw_well_typed : core. + + Lemma preservation0 : forall e1 e2, + step0 e1 e2 + -> forall t, hasty $0 e1 t + -> hasty $0 e2 t. + Proof. + invert 1; t. + Qed. + + Local Hint Resolve preservation0 : core. + + Lemma preservation' : forall C e1 e1', + plug true C e1 e1' + -> forall e2 e2' t, plug true C e2 e2' + -> step0 e1 e2 + -> hasty $0 e1' t + -> hasty $0 e2' t. + Proof. + induct 1; t. + Qed. + + Local Hint Resolve preservation' : core. + + Lemma preservation : forall e1 e2, + step e1 e2 + -> forall t, hasty $0 e1 t + -> hasty $0 e2 t. + Proof. + invert 1; t. + Qed. + + Local Hint Resolve progress preservation : core. + + Theorem safety : forall e t, hasty $0 e t + -> invariantFor (trsys_of e) + (fun e' => value e' + \/ (exists n, e' = Throw (Const n)) + \/ exists e'', step e' e''). + Proof. + simplify. + apply invariant_weaken with (invariant1 := fun e' => hasty $0 e' t); eauto. + apply invariant_induction; simplify; eauto; equality. + Qed. +End StlcExceptions. (** * Mutable Variables *)