FirstClassFunctions compiles again

This commit is contained in:
Adam Chlipala 2020-02-12 13:53:55 -05:00
parent fbf211bad2
commit 6f17daa2df

View file

@ -732,8 +732,6 @@ Fixpoint allSublists {A} (ls : list A) : list (list A) :=
Compute allSublists [1; 2; 3].
Definition sum ls := fold_left plus ls 0.
(* This is the main function we want to define. It looks for a sublist whose
* sum matches some target. *)
Fixpoint sublistSummingTo (ns : list nat) (target : nat) : option (list nat) :=
@ -1075,16 +1073,16 @@ Fixpoint flattenKD {A} (fuel : nat) (t : tree A) (acc : list A)
(* A somewhat peculiar notion of size for trees. Why that 2 instead of 1?
* Because it lets the proof below work out! *)
Fixpoint size {A} (t : tree A) : nat :=
Fixpoint tree_size {A} (t : tree A) : nat :=
match t with
| Leaf => 0
| Node l _ r => 2 + size l + size r
| Node l _ r => 2 + tree_size l + tree_size r
end.
Fixpoint continuation_size {A} (k : flatten_continuation A) : nat :=
match k with
| KDone => 0
| KMore l d k' => 1 + size l + continuation_size k'
| KMore l d k' => 1 + tree_size l + continuation_size k'
end.
(* A continuation encodes a flattening call, waiting to be run.
@ -1100,7 +1098,7 @@ Fixpoint flatten_cont {A} (k : flatten_continuation A) : list A :=
* *strong induction* via the parameter [fuel], which bounds the actual fuel
* amount [fuel']. *)
Lemma flattenKD_ok' : forall {A} fuel fuel' (t : tree A) acc k,
size t + continuation_size k < fuel' < fuel
tree_size t + continuation_size k < fuel' < fuel
-> flattenKD fuel' t acc k
= flatten_cont k ++ flatten t ++ acc.
Proof.
@ -1126,10 +1124,10 @@ Qed.
(* A nice, simple final theorem can be stated, when we initialize fuel in the
* right way. *)
Theorem flattenKD_ok : forall {A} (t : tree A),
flattenKD (size t + 1) t [] KDone = flatten t.
flattenKD (tree_size t + 1) t [] KDone = flatten t.
Proof.
simplify.
rewrite flattenKD_ok' with (fuel := size t + 2).
rewrite flattenKD_ok' with (fuel := tree_size t + 2).
simplify.
apply app_nil_r.
simplify.
@ -1191,7 +1189,7 @@ Proof.
Qed.
Theorem flattenS_ok : forall {A} (t : tree A),
flattenS (size t + 1) t [] [] = flatten t.
flattenS (tree_size t + 1) t [] [] = flatten t.
Proof.
simplify.
rewrite flattenS_flattenKD.