mirror of
https://github.com/achlipala/frap.git
synced 2025-01-20 21:46:11 +00:00
TransitionSystems WIP
This commit is contained in:
parent
3b82c0b2bd
commit
754784c286
2 changed files with 67 additions and 17 deletions
40
Invariant.v
40
Invariant.v
|
@ -1,35 +1,41 @@
|
|||
Require Import Relations.
|
||||
|
||||
Set Implicit Arguments.
|
||||
|
||||
Definition invariantFor {state} (initial : state -> Prop) (step : state -> state -> Prop) (invariant : state -> Prop) :=
|
||||
forall s, initial s
|
||||
-> forall s', step^* s s'
|
||||
|
||||
Record trsys state := {
|
||||
Initial : state -> Prop;
|
||||
Step : state -> state -> Prop
|
||||
}.
|
||||
|
||||
Definition invariantFor {state} (sys : trsys state) (invariant : state -> Prop) :=
|
||||
forall s, sys.(Initial) s
|
||||
-> forall s', sys.(Step)^* s s'
|
||||
-> invariant s'.
|
||||
|
||||
Theorem use_invariant : forall {state} (initial : state -> Prop)
|
||||
(step : state -> state -> Prop) (invariant : state -> Prop) s s',
|
||||
step^* s s'
|
||||
-> initial s
|
||||
-> invariantFor initial step invariant
|
||||
Theorem use_invariant : forall {state} (sys : trsys state) (invariant : state -> Prop) s s',
|
||||
sys.(Step)^* s s'
|
||||
-> sys.(Initial) s
|
||||
-> invariantFor sys invariant
|
||||
-> invariant s'.
|
||||
Proof.
|
||||
firstorder.
|
||||
Qed.
|
||||
|
||||
Theorem invariantFor_monotone : forall {state} (initial : state -> Prop)
|
||||
(step : state -> state -> Prop) (invariant1 invariant2 : state -> Prop),
|
||||
Theorem invariantFor_monotone : forall {state} (sys : trsys state)
|
||||
(invariant1 invariant2 : state -> Prop),
|
||||
(forall s, invariant1 s -> invariant2 s)
|
||||
-> invariantFor initial step invariant1
|
||||
-> invariantFor initial step invariant2.
|
||||
-> invariantFor sys invariant1
|
||||
-> invariantFor sys invariant2.
|
||||
Proof.
|
||||
unfold invariantFor; intuition eauto.
|
||||
Qed.
|
||||
|
||||
Theorem invariant_induction : forall {state} (initial : state -> Prop)
|
||||
(step : state -> state -> Prop) (invariant : state -> Prop),
|
||||
(forall s, initial s -> invariant s)
|
||||
-> (forall s, invariant s -> forall s', step s s' -> invariant s')
|
||||
-> invariantFor initial step invariant.
|
||||
Theorem invariant_induction : forall {state} (sys : trsys state)
|
||||
(invariant : state -> Prop),
|
||||
(forall s, sys.(Initial) s -> invariant s)
|
||||
-> (forall s, invariant s -> forall s', sys.(Step) s s' -> invariant s')
|
||||
-> invariantFor sys invariant.
|
||||
Proof.
|
||||
unfold invariantFor; intros.
|
||||
assert (invariant s) by eauto.
|
||||
|
|
|
@ -110,6 +110,50 @@ Proof.
|
|||
* both [trc] and [fact_step]. *)
|
||||
Qed.
|
||||
|
||||
(* It will be useful to give state machines more first-class status, as
|
||||
* *transition systems*, formalized by this record type. It has one type
|
||||
* parameter, [state], which records the type of states. *)
|
||||
Record trsys state := {
|
||||
Initial : state -> Prop;
|
||||
Step : state -> state -> Prop
|
||||
}.
|
||||
|
||||
Definition invariantFor {state} (sys : trsys state) (invariant : state -> Prop) :=
|
||||
forall s, sys.(Initial) s
|
||||
-> forall s', sys.(Step)^* s s'
|
||||
-> invariant s'.
|
||||
|
||||
Theorem use_invariant : forall {state} (sys : trsys state) (invariant : state -> Prop) s s',
|
||||
sys.(Step)^* s s'
|
||||
-> sys.(Initial) s
|
||||
-> invariantFor sys invariant
|
||||
-> invariant s'.
|
||||
Proof.
|
||||
firstorder.
|
||||
Qed.
|
||||
|
||||
Theorem invariantFor_monotone : forall {state} (sys : trsys state)
|
||||
(invariant1 invariant2 : state -> Prop),
|
||||
(forall s, invariant1 s -> invariant2 s)
|
||||
-> invariantFor sys invariant1
|
||||
-> invariantFor sys invariant2.
|
||||
Proof.
|
||||
unfold invariantFor; intuition eauto.
|
||||
Qed.
|
||||
|
||||
Theorem invariant_induction : forall {state} (sys : trsys state)
|
||||
(invariant : state -> Prop),
|
||||
(forall s, sys.(Initial) s -> invariant s)
|
||||
-> (forall s, invariant s -> forall s', sys.(Step) s s' -> invariant s')
|
||||
-> invariantFor sys invariant.
|
||||
Proof.
|
||||
unfold invariantFor; intros.
|
||||
assert (invariant s) by eauto.
|
||||
clear H1.
|
||||
induction H2; eauto.
|
||||
Qed.
|
||||
|
||||
|
||||
(* To prove that our state machine is correct, we rely on the crucial technique
|
||||
* of *invariants*. What is an invariant? Here's a general definition, in
|
||||
* terms of an arbitrary *transition system* defined by a set of states,
|
||||
|
|
Loading…
Reference in a new issue