mirror of
https://github.com/achlipala/frap.git
synced 2025-01-20 21:46:11 +00:00
DeepAndShallowEmbeddings: initial, simpler example
This commit is contained in:
parent
11e1c74b1c
commit
7a49ce887f
1 changed files with 111 additions and 1 deletions
|
@ -7,7 +7,7 @@ Require Import Frap.
|
|||
|
||||
Set Implicit Arguments.
|
||||
|
||||
(** * Shared notations and definitions *)
|
||||
(** * Shared notations and definitions; main material starts afterward. *)
|
||||
|
||||
Notation "m $! k" := (match m $? k with Some n => n | None => O end) (at level 30).
|
||||
Definition heap := fmap nat nat.
|
||||
|
@ -26,6 +26,116 @@ Ltac simp := repeat (simplify; subst; propositional;
|
|||
end); try linear_arithmetic.
|
||||
|
||||
|
||||
(** * Basic concepts of shallow, deep, and mixed embeddings *)
|
||||
|
||||
Module SimpleShallow.
|
||||
Definition foo (x y : nat) : nat :=
|
||||
let u := x + y in
|
||||
let v := u * y in
|
||||
u + v.
|
||||
End SimpleShallow.
|
||||
|
||||
Module SimpleDeep.
|
||||
Inductive exp :=
|
||||
| Var (x : var)
|
||||
| Plus (e1 e2 : exp)
|
||||
| Times (e1 e2 : exp)
|
||||
| Let (x : var) (e1 e2 : exp).
|
||||
|
||||
Definition foo : exp :=
|
||||
Let "u" (Plus (Var "x") (Var "y"))
|
||||
(Let "v" (Times (Var "u") (Var "y"))
|
||||
(Plus (Var "u") (Var "v"))).
|
||||
|
||||
Fixpoint interp (e : exp) (v : fmap var nat) : nat :=
|
||||
match e with
|
||||
| Var x => v $! x
|
||||
| Plus e1 e2 => interp e1 v + interp e2 v
|
||||
| Times e1 e2 => interp e1 v * interp e2 v
|
||||
| Let x e1 e2 => interp e2 (v $+ (x, interp e1 v))
|
||||
end.
|
||||
End SimpleDeep.
|
||||
|
||||
Theorem shallow_to_deep : forall x y,
|
||||
SimpleShallow.foo x y = SimpleDeep.interp SimpleDeep.foo ($0 $+ ("x", x) $+ ("y", y)).
|
||||
Proof.
|
||||
unfold SimpleShallow.foo.
|
||||
simplify.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
Module SimpleMixed.
|
||||
Inductive exp :=
|
||||
| Const (n : nat)
|
||||
| Plus (e1 e2 : exp)
|
||||
| Times (e1 e2 : exp)
|
||||
| Let (e1 : exp) (e2 : nat -> exp).
|
||||
|
||||
Definition foo (x y : nat) : exp :=
|
||||
Let (Plus (Const x) (Const y))
|
||||
(fun u => Let (Times (Const u) (Const y))
|
||||
(fun v => Plus (Const u) (Const v))).
|
||||
|
||||
Fixpoint interp (e : exp) : nat :=
|
||||
match e with
|
||||
| Const n => n
|
||||
| Plus e1 e2 => interp e1 + interp e2
|
||||
| Times e1 e2 => interp e1 * interp e2
|
||||
| Let e1 e2 => interp (e2 (interp e1))
|
||||
end.
|
||||
|
||||
Fixpoint reduce (e : exp) : exp :=
|
||||
match e with
|
||||
| Const n => Const n
|
||||
| Plus e1 e2 =>
|
||||
let e1' := reduce e1 in
|
||||
let e2' := reduce e2 in
|
||||
match e1' with
|
||||
| Const 0 => e2'
|
||||
| _ => match e2' with
|
||||
| Const 0 => e1'
|
||||
| _ => Plus e1' e2'
|
||||
end
|
||||
end
|
||||
| Times e1 e2 =>
|
||||
let e1' := reduce e1 in
|
||||
let e2' := reduce e2 in
|
||||
match e1' with
|
||||
| Const 1 => e2'
|
||||
| _ => match e2' with
|
||||
| Const 1 => e1'
|
||||
| _ => Times e1' e2'
|
||||
end
|
||||
end
|
||||
| Let e1 e2 =>
|
||||
let e1' := reduce e1 in
|
||||
match e1' with
|
||||
| Const n => reduce (e2 n)
|
||||
| _ => Let e1' (fun n => reduce (e2 n))
|
||||
end
|
||||
end.
|
||||
|
||||
Compute (fun x => reduce (Let (Plus (Const 0) (Const 1)) (fun n => Times (Const n) (Const x)))).
|
||||
|
||||
Theorem reduce_ok : forall e, interp (reduce e) = interp e.
|
||||
Proof.
|
||||
induct e; simplify;
|
||||
repeat match goal with
|
||||
| [ H : _ = interp _ |- _ ] => rewrite <- H
|
||||
| [ |- context[match ?E with _ => _ end] ] => cases E; simplify; subst; try linear_arithmetic
|
||||
end; eauto.
|
||||
Qed.
|
||||
End SimpleMixed.
|
||||
|
||||
Theorem shallow_to_mixed : forall x y,
|
||||
SimpleShallow.foo x y = SimpleMixed.interp (SimpleMixed.foo x y).
|
||||
Proof.
|
||||
unfold SimpleShallow.foo.
|
||||
simplify.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
|
||||
(** * Shallow embedding of a language very similar to the one we used last chapter *)
|
||||
|
||||
Module Shallow.
|
||||
|
|
Loading…
Reference in a new issue