diff --git a/frap_book.tex b/frap_book.tex index 0ae35f3..9f0a1d7 100644 --- a/frap_book.tex +++ b/frap_book.tex @@ -2779,7 +2779,7 @@ These rules together are \emph{complete}\index{completeness of Hoare logic}, in Here we only go into detail on a proof of the dual property, \emph{soundness}\index{soundness of Hoare logic}. \begin{lemma}\label{hoare_while} - Assume the following fact: Together, $\bigstep{(h, v, c)}{(h', v')}$, $I(h, v)$, and $\denote{b}(h, s)$ imply $I(h', v')$. + Assume the following fact: Together, $\bigstep{(h, v, c)}{(h', v')}$, $I(h, v)$, and $\denote{b}(h, v)$ imply $I(h', v')$. Then, given $\bigstep{(h, v, \{I\} \while{b}{c})}{(h', v')}$, it follows that $I(h', v')$ and $\neg \denote{b}(h', v')$. \end{lemma} \begin{proof}