diff --git a/Polymorphism.v b/Polymorphism.v index 652a205..49fea50 100644 --- a/Polymorphism.v +++ b/Polymorphism.v @@ -414,3 +414,191 @@ Proof. simplify. equality. Qed. + + +(** * Syntax trees *) + +(* Trees are particularly important to us in studying program proof, since it is + * natural to represent programs as *syntax trees*. Here's a quick example, for + * a tiny imperative language. *) + +Inductive expression : Set := +| Const (n : nat) +| Var (x : var) +| Plus (e1 e2 : expression) +| Minus (e1 e2 : expression) +| Times (e1 e2 : expression) +| GreaterThan (e1 e2 : expression) +| Not (e : expression). + +Inductive statement : Set := +| Assign (x : var) (e : expression) +| Sequence (s1 s2 : statement) +| IfThenElse (e : expression) (s1 s2 : statement) +| WhileLoop (e : expression) (s : statement). + +(* First, here's a quick sample of nifty notations to write + * almost-natural-looking embedded programs in Coq. *) +Coercion Const : nat >-> expression. +Coercion Var : string >-> expression. +Infix "+" := Plus : embedded_scope. +Infix "-" := Minus : embedded_scope. +Infix "*" := Times : embedded_scope. +Infix ">" := GreaterThan : embedded_scope. +Infix "<-" := Assign (at level 75) : embedded_scope. +Infix ";" := Sequence (at level 76) : embedded_scope. +Notation "'If' e {{ s1 }} 'else' {{ s2 }}" := (IfThenElse e s1 s2) (at level 75) : embedded_scope. +Notation "'While' e {{ s }}" := (WhileLoop e s) (at level 75) : embedded_scope. +Delimit Scope embedded_scope with embedded. + +Example factorial := + ("answer" <- 1; + While ("input" > 0) {{ + "answer" <- "answer" * "input"; + "input" <- "input" - 1 + }})%embedded. + +(* A variety of compiler-style operations can be coded on top of this type. + * Here's one to count total variable occurrences. *) + +Fixpoint varsInExpression (e : expression) : nat := + match e with + | Const _ => 0 + | Var _ => 1 + | Plus e1 e2 + | Minus e1 e2 + | Times e1 e2 + | GreaterThan e1 e2 => varsInExpression e1 + varsInExpression e2 + | Not e1 => varsInExpression e1 + end. + +Fixpoint varsInStatement (s : statement) : nat := + match s with + | Assign _ e => 1 + varsInExpression e + | Sequence s1 s2 => varsInStatement s1 + varsInStatement s2 + | IfThenElse e s1 s2 => varsInExpression e + varsInStatement s1 + varsInStatement s2 + | WhileLoop e s1 => varsInExpression e + varsInStatement s1 + end. + +(* We will need to wait for a few more lectures' worth of conceptual progress + * before we can prove that transformations on programs preserve meaning, but we + * do already have enough tools that prove that transformations preserve more + * basic properties, like number of variables. Here's one such transformation, + * which flips "then" and "else" cases while also negating "if" conditions. *) +Fixpoint flipper (s : statement) : statement := + match s with + | Assign _ _ => s + | Sequence s1 s2 => Sequence (flipper s1) (flipper s2) + | IfThenElse e s1 s2 => IfThenElse (Not e) (flipper s2) (flipper s1) + | WhileLoop e s1 => WhileLoop e (flipper s1) + end. + +Theorem varsIn_flipper : forall s, + varsInStatement (flipper s) = varsInStatement s. +Proof. + induct s; simplify. + + equality. + + equality. + + linear_arithmetic. + + equality. +Qed. + +(* Just for the sheer madcap fun of it, let's write some translations of + * programs into our lists from before, with variables as data values. *) + +Fixpoint listifyExpression (e : expression) : list var := + match e with + | Const _ => [] + | Var x => [x] + | Plus e1 e2 + | Minus e1 e2 + | Times e1 e2 + | GreaterThan e1 e2 => listifyExpression e1 ++ listifyExpression e2 + | Not e1 => listifyExpression e1 + end. + +Fixpoint listifyStatement (s : statement) : list var := + match s with + | Assign x e => x :: listifyExpression e + | Sequence s1 s2 => listifyStatement s1 ++ listifyStatement s2 + | IfThenElse e s1 s2 => listifyExpression e ++ listifyStatement s1 ++ listifyStatement s2 + | WhileLoop e s1 => listifyExpression e ++ listifyStatement s1 + end. + +Compute listifyStatement factorial. + +(* At this point, I can't resist switching to a more automated proof style, + * though still a pretty tame one. *) + +Hint Rewrite length_app. + +Lemma length_listifyExpression : forall e, + length (listifyExpression e) = varsInExpression e. +Proof. + induct e; simplify; linear_arithmetic. +Qed. + +Hint Rewrite length_listifyExpression. + +Theorem length_listifyStatement : forall s, + length (listifyStatement s) = varsInStatement s. +Proof. + induct s; simplify; linear_arithmetic. +Qed. + +(* Other transformations are also possible, like the Swedish-Chef optimization, + * that turns every variable into "bork". It saves many bits when most variable + * names are longer than 4 characters. *) + +Fixpoint swedishExpression (e : expression) : expression := + match e with + | Const _ => e + | Var _ => Var "bork" + | Plus e1 e2 => Plus (swedishExpression e1) (swedishExpression e2) + | Minus e1 e2 => Minus (swedishExpression e1) (swedishExpression e2) + | Times e1 e2 => Times (swedishExpression e1) (swedishExpression e2) + | GreaterThan e1 e2 => GreaterThan (swedishExpression e1) (swedishExpression e2) + | Not e1 => Not (swedishExpression e1) + end. + +Fixpoint swedishStatement (s : statement) : statement := + match s with + | Assign _ e => Assign "bork" (swedishExpression e) + | Sequence s1 s2 => Sequence (swedishStatement s1) (swedishStatement s2) + | IfThenElse e s1 s2 => IfThenElse (swedishExpression e) (swedishStatement s1) (swedishStatement s2) + | WhileLoop e s1 => WhileLoop (swedishExpression e) (swedishStatement s1) + end. + +Compute swedishStatement factorial. + +Fixpoint swedishList (ls : list var) : list var := + match ls with + | [] => [] + | _ :: ls => "bork" :: swedishList ls + end. + +Lemma swedishList_app : forall ls1 ls2, + swedishList (ls1 ++ ls2) = swedishList ls1 ++ swedishList ls2. +Proof. + induct ls1; simplify; equality. +Qed. + +Hint Rewrite swedishList_app. + +Lemma listifyExpression_swedishExpression : forall e, + listifyExpression (swedishExpression e) = swedishList (listifyExpression e). +Proof. + induct e; simplify; equality. +Qed. + +Hint Rewrite listifyExpression_swedishExpression. + +Lemma listifyStatement_swedishStatement : forall s, + listifyStatement (swedishStatement s) = swedishList (listifyStatement s). +Proof. + induct s; simplify; equality. +Qed. diff --git a/_CoqProject b/_CoqProject index 651175f..983e8eb 100644 --- a/_CoqProject +++ b/_CoqProject @@ -10,6 +10,7 @@ AbstractInterpret.v Frap.v BasicSyntax_template.v BasicSyntax.v +Polymorphism.v Interpreters_template.v Interpreters.v TransitionSystems_template.v