mirror of
https://github.com/achlipala/frap.git
synced 2025-01-22 06:16:12 +00:00
First phase of update for Coq 8.10
This commit is contained in:
parent
e92a697e33
commit
89f21b8533
11 changed files with 114 additions and 111 deletions
4
.gitignore
vendored
4
.gitignore
vendored
|
@ -13,7 +13,11 @@ Makefile.coq
|
|||
Makefile.coq.conf
|
||||
*.glob
|
||||
*.v.d
|
||||
*.coq.d
|
||||
*.coqdeps.d
|
||||
*.vo
|
||||
*.vok
|
||||
*.vos
|
||||
frap.tgz
|
||||
.coq-native
|
||||
Deep.ml*
|
||||
|
|
|
@ -40,6 +40,7 @@ Inductive cmd :=
|
|||
|
||||
Coercion Const : nat >-> arith.
|
||||
Coercion Var : var >-> arith.
|
||||
Declare Scope arith_scope.
|
||||
Infix "+" := Plus : arith_scope.
|
||||
Infix "-" := Minus : arith_scope.
|
||||
Infix "*" := Times : arith_scope.
|
||||
|
@ -126,7 +127,7 @@ Inductive generate : valuation * cmd -> list (option nat) -> Prop :=
|
|||
-> generate vc' ns
|
||||
-> generate vc (Some n :: ns).
|
||||
|
||||
Hint Constructors plug step0 cstep generate.
|
||||
Hint Constructors plug step0 cstep generate : core.
|
||||
|
||||
(* Notice that [generate] is defined so that, for any two of a starting state's
|
||||
* traces, one is a prefix of the other. The same wouldn't necessarily hold if
|
||||
|
@ -178,8 +179,8 @@ Example month_boundaries_in_days :=
|
|||
* because the program does not terminate, generating new output infinitely
|
||||
* often. *)
|
||||
|
||||
Hint Extern 1 (interp _ _ = _) => simplify; equality.
|
||||
Hint Extern 1 (interp _ _ <> _) => simplify; equality.
|
||||
Hint Extern 1 (interp _ _ = _) => simplify; equality : core.
|
||||
Hint Extern 1 (interp _ _ <> _) => simplify; equality : core.
|
||||
|
||||
Theorem first_few_values :
|
||||
generate ($0, month_boundaries_in_days) [Some 28; Some 56].
|
||||
|
@ -317,7 +318,7 @@ Proof.
|
|||
equality.
|
||||
Qed.
|
||||
|
||||
Hint Resolve peel_cseq.
|
||||
Hint Resolve peel_cseq : core.
|
||||
|
||||
Lemma plug_deterministic : forall v C c1 c2, plug C c1 c2
|
||||
-> forall l vc1, step0 (v, c1) l vc1
|
||||
|
@ -499,7 +500,7 @@ Proof.
|
|||
induct 1; simplify; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve plug_cfoldExprs1.
|
||||
Hint Resolve plug_cfoldExprs1 : core.
|
||||
|
||||
(* The main correctness property! *)
|
||||
Theorem cfoldExprs_ok : forall v c,
|
||||
|
@ -593,7 +594,7 @@ Proof.
|
|||
invert H4.
|
||||
Qed.
|
||||
|
||||
Hint Resolve silent_generate_fwd silent_generate_bwd generate_Skip.
|
||||
Hint Resolve silent_generate_fwd silent_generate_bwd generate_Skip : core.
|
||||
|
||||
(* You might have noticed that our old notion of simulation doesn't apply to the
|
||||
* new optimization. The reason is that, because the optimized program skips
|
||||
|
@ -700,7 +701,7 @@ Section simulation_skipping.
|
|||
clear; induct 1; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve step_to_termination.
|
||||
Hint Resolve step_to_termination : core.
|
||||
|
||||
Lemma R_Skip : forall n vc1 v,
|
||||
R n vc1 (v, Skip)
|
||||
|
@ -766,9 +767,9 @@ Section simulation_skipping.
|
|||
Qed.
|
||||
End simulation_skipping.
|
||||
|
||||
Hint Extern 1 (_ < _) => linear_arithmetic.
|
||||
Hint Extern 1 (_ >= _) => linear_arithmetic.
|
||||
Hint Extern 1 (_ <> _) => linear_arithmetic.
|
||||
Hint Extern 1 (_ < _) => linear_arithmetic : core.
|
||||
Hint Extern 1 (_ >= _) => linear_arithmetic : core.
|
||||
Hint Extern 1 (_ <> _) => linear_arithmetic : core.
|
||||
|
||||
(* We will need to do some bookkeeping of [n] values. This function is the
|
||||
* trick, as we only need to skip steps based on removing [If]s from the code.
|
||||
|
@ -816,7 +817,7 @@ Proof.
|
|||
induct 1; simplify; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve plug_cfold1.
|
||||
Hint Resolve plug_cfold1 : core.
|
||||
|
||||
Lemma plug_samefold : forall C c1 c1',
|
||||
plug C c1 c1'
|
||||
|
@ -828,7 +829,7 @@ Proof.
|
|||
f_equal; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve plug_samefold.
|
||||
Hint Resolve plug_samefold : core.
|
||||
|
||||
Lemma plug_countIfs : forall C c1 c1',
|
||||
plug C c1 c1'
|
||||
|
@ -840,16 +841,16 @@ Proof.
|
|||
apply IHplug in H5; linear_arithmetic.
|
||||
Qed.
|
||||
|
||||
Hint Resolve plug_countIfs.
|
||||
Hint Resolve plug_countIfs : core.
|
||||
|
||||
Hint Extern 1 (interp ?e _ = _) =>
|
||||
match goal with
|
||||
| [ H : cfoldArith e = _ |- _ ] => rewrite <- cfoldArith_ok; rewrite H
|
||||
end.
|
||||
end : core.
|
||||
Hint Extern 1 (interp ?e _ <> _) =>
|
||||
match goal with
|
||||
| [ H : cfoldArith e = _ |- _ ] => rewrite <- cfoldArith_ok; rewrite H
|
||||
end.
|
||||
end : core.
|
||||
|
||||
(* The final proof is fairly straightforward now. *)
|
||||
Lemma cfold_ok : forall v c,
|
||||
|
@ -1118,7 +1119,7 @@ Section simulation_multiple.
|
|||
(* We won't comment on the other proof details, though they could be
|
||||
* interesting reading. *)
|
||||
|
||||
Hint Constructors generateN.
|
||||
Hint Constructors generateN : core.
|
||||
|
||||
Lemma generateN_fwd : forall sc vc ns,
|
||||
generateN sc vc ns
|
||||
|
@ -1127,7 +1128,7 @@ Section simulation_multiple.
|
|||
induct 1; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve generateN_fwd.
|
||||
Hint Resolve generateN_fwd : core.
|
||||
|
||||
Lemma generateN_bwd : forall vc ns,
|
||||
generate vc ns
|
||||
|
@ -1319,7 +1320,7 @@ Proof.
|
|||
first_order.
|
||||
Qed.
|
||||
|
||||
Hint Resolve agree_add agree_add_tempVar_fwd agree_add_tempVar_bwd agree_add_tempVar_bwd_prime agree_refl.
|
||||
Hint Resolve agree_add agree_add_tempVar_fwd agree_add_tempVar_bwd agree_add_tempVar_bwd_prime agree_refl : core.
|
||||
|
||||
(* And here are two more unremarkable lemmas. *)
|
||||
|
||||
|
@ -1332,7 +1333,7 @@ Proof.
|
|||
eauto 6.
|
||||
Qed.
|
||||
|
||||
Hint Resolve silent_csteps_front.
|
||||
Hint Resolve silent_csteps_front : core.
|
||||
|
||||
Lemma tempVar_contra : forall n1 n2,
|
||||
tempVar n1 = tempVar n2
|
||||
|
@ -1343,7 +1344,7 @@ Proof.
|
|||
first_order.
|
||||
Qed.
|
||||
|
||||
Hint Resolve tempVar_contra.
|
||||
Hint Resolve tempVar_contra : core.
|
||||
|
||||
Lemma self_prime_contra : forall s,
|
||||
(s ++ "'")%string = s -> False.
|
||||
|
@ -1351,7 +1352,7 @@ Proof.
|
|||
induct s; simplify; equality.
|
||||
Qed.
|
||||
|
||||
Hint Resolve self_prime_contra.
|
||||
Hint Resolve self_prime_contra : core.
|
||||
|
||||
(* We've now proved all properties of [tempVar] that we need, so let's ask Coq
|
||||
* not to reduce applications of it anymore, to keep goals simpler. *)
|
||||
|
@ -1559,7 +1560,7 @@ Proof.
|
|||
induct 1; bool; auto.
|
||||
Qed.
|
||||
|
||||
Hint Immediate noUnderscore_plug.
|
||||
Hint Immediate noUnderscore_plug : core.
|
||||
|
||||
Lemma silent_csteps_plug : forall C c1 c1',
|
||||
plug C c1 c1'
|
||||
|
@ -1570,7 +1571,7 @@ Proof.
|
|||
induct 1; invert 1; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve silent_csteps_plug.
|
||||
Hint Resolve silent_csteps_plug : core.
|
||||
|
||||
Fixpoint flattenContext (C : context) : context :=
|
||||
match C with
|
||||
|
@ -1584,7 +1585,7 @@ Proof.
|
|||
induct 1; simplify; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve plug_flatten.
|
||||
Hint Resolve plug_flatten : core.
|
||||
|
||||
Lemma plug_total : forall c C, exists c', plug C c c'.
|
||||
Proof.
|
||||
|
@ -1603,7 +1604,7 @@ Proof.
|
|||
eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve plug_cstep.
|
||||
Hint Resolve plug_cstep : core.
|
||||
|
||||
Lemma step0_noUnderscore : forall v c l v' c',
|
||||
step0 (v, c) l (v', c')
|
||||
|
@ -1615,7 +1616,7 @@ Proof.
|
|||
reflexivity.
|
||||
Qed.
|
||||
|
||||
Hint Resolve step0_noUnderscore.
|
||||
Hint Resolve step0_noUnderscore : core.
|
||||
|
||||
Fixpoint noUnderscoreContext (C : context) : bool :=
|
||||
match C with
|
||||
|
@ -1642,7 +1643,7 @@ Proof.
|
|||
rewrite H4, H3; reflexivity.
|
||||
Qed.
|
||||
|
||||
Hint Resolve noUnderscore_plug_context noUnderscore_plug_fwd.
|
||||
Hint Resolve noUnderscore_plug_context noUnderscore_plug_fwd : core.
|
||||
|
||||
(* Finally, the main correctness theorem. *)
|
||||
Lemma flatten_ok : forall v c,
|
||||
|
|
|
@ -14,12 +14,12 @@ Notation "m $! k" := (match m $? k with Some n => n | None => O end) (at level 3
|
|||
Definition heap := fmap nat nat.
|
||||
Definition assertion := heap -> Prop.
|
||||
|
||||
Hint Extern 1 (_ <= _) => linear_arithmetic.
|
||||
Hint Extern 1 (@eq nat _ _) => linear_arithmetic.
|
||||
Hint Extern 1 (_ <= _) => linear_arithmetic : core.
|
||||
Hint Extern 1 (@eq nat _ _) => linear_arithmetic : core.
|
||||
|
||||
Example h0 : heap := $0 $+ (0, 2) $+ (1, 1) $+ (2, 8) $+ (3, 6).
|
||||
|
||||
Hint Rewrite max_l max_r using linear_arithmetic.
|
||||
Hint Rewrite max_l max_r using linear_arithmetic : core.
|
||||
|
||||
Ltac simp := repeat (simplify; subst; propositional;
|
||||
try match goal with
|
||||
|
@ -493,16 +493,15 @@ Module Deep.
|
|||
cases (interp c h).
|
||||
eauto.
|
||||
Qed.
|
||||
|
||||
(* We use Coq's *extraction* feature to produce OCaml versions of our deeply
|
||||
* embedded programs. Then we can run them using OCaml intepreters, which are
|
||||
* able to take advantage of the side effects built into OCaml, as a
|
||||
* performance optimization. This command generates file "Deep.ml", which can
|
||||
* be loaded along with "DeepInterp.ml" to run the generated code. Note how
|
||||
* the latter file uses OCaml's built-in mutable hash-table type for efficient
|
||||
* representation of program memories. *)
|
||||
Extraction "Deep.ml" array_max increment_all.
|
||||
End Deep.
|
||||
(* We use Coq's *extraction* feature to produce OCaml versions of our deeply
|
||||
* embedded programs. Then we can run them using OCaml intepreters, which are
|
||||
* able to take advantage of the side effects built into OCaml, as a
|
||||
* performance optimization. This command generates file "Deep.ml", which can
|
||||
* be loaded along with "DeepInterp.ml" to run the generated code. Note how
|
||||
* the latter file uses OCaml's built-in mutable hash-table type for efficient
|
||||
* representation of program memories. *)
|
||||
Extraction "Deep.ml" Deep.array_max Deep.increment_all.
|
||||
|
||||
|
||||
(** * A slightly fancier deep embedding, adding unbounded loops *)
|
||||
|
@ -836,10 +835,9 @@ Module Deeper.
|
|||
eapply invert_Return; eauto.
|
||||
simplify; auto.
|
||||
Qed.
|
||||
|
||||
Extraction "Deeper.ml" index_of.
|
||||
End Deeper.
|
||||
|
||||
Extraction "Deeper.ml" Deeper.index_of.
|
||||
|
||||
(** * Adding the possibility of program failure *)
|
||||
|
||||
|
@ -886,7 +884,7 @@ Module DeeperWithFail.
|
|||
| Stepped (h : heap) (c : cmd result)
|
||||
| Failed.
|
||||
|
||||
Implicit Arguments Failed [result].
|
||||
Arguments Failed {result}.
|
||||
|
||||
Fixpoint step {result} (c : cmd result) (h : heap) : stepResult result :=
|
||||
match c with
|
||||
|
@ -918,8 +916,6 @@ Module DeeperWithFail.
|
|||
end
|
||||
end.
|
||||
|
||||
Extraction "DeeperWithFail.ml" forever.
|
||||
|
||||
Inductive hoare_triple : assertion -> forall {result}, cmd result -> (result -> assertion) -> Prop :=
|
||||
| HtReturn : forall P {result : Set} (v : result),
|
||||
hoare_triple P (Return v) (fun r h => P h /\ r = v)
|
||||
|
@ -1216,7 +1212,7 @@ Module DeeperWithFail.
|
|||
reflexivity.
|
||||
Qed.
|
||||
|
||||
Hint Rewrite firstn_nochange fold_left_firstn using linear_arithmetic.
|
||||
Hint Rewrite firstn_nochange fold_left_firstn using linear_arithmetic : core.
|
||||
|
||||
(* Here's the soundness theorem for [heapfold], relying on a hypothesis of
|
||||
* soundness for [combine]. *)
|
||||
|
@ -1274,7 +1270,7 @@ Module DeeperWithFail.
|
|||
apply IHls; linear_arithmetic.
|
||||
Qed.
|
||||
|
||||
Hint Resolve le_max.
|
||||
Hint Resolve le_max : core.
|
||||
|
||||
(* Finally, a short proof of [array_max], appealing mostly to the generic
|
||||
* proof of [heapfold] *)
|
||||
|
@ -1291,3 +1287,5 @@ Module DeeperWithFail.
|
|||
auto.
|
||||
Qed.
|
||||
End DeeperWithFail.
|
||||
|
||||
Extraction "DeeperWithFail.ml" DeeperWithFail.forever.
|
||||
|
|
|
@ -9,12 +9,12 @@ Notation "m $! k" := (match m $? k with Some n => n | None => O end) (at level 3
|
|||
Definition heap := fmap nat nat.
|
||||
Definition assertion := heap -> Prop.
|
||||
|
||||
Hint Extern 1 (_ <= _) => linear_arithmetic.
|
||||
Hint Extern 1 (@eq nat _ _) => linear_arithmetic.
|
||||
Hint Extern 1 (_ <= _) => linear_arithmetic : core.
|
||||
Hint Extern 1 (@eq nat _ _) => linear_arithmetic : core.
|
||||
|
||||
Example h0 : heap := $0 $+ (0, 2) $+ (1, 1) $+ (2, 8) $+ (3, 6).
|
||||
|
||||
Hint Rewrite max_l max_r using linear_arithmetic.
|
||||
Hint Rewrite max_l max_r using linear_arithmetic : core.
|
||||
|
||||
Ltac simp := repeat (simplify; subst; propositional;
|
||||
try match goal with
|
||||
|
@ -396,10 +396,10 @@ Module Deep.
|
|||
cases (interp c h).
|
||||
eauto.
|
||||
Qed.
|
||||
|
||||
Extraction "Deep.ml" array_max increment_all.
|
||||
End Deep.
|
||||
|
||||
Extraction "Deep.ml" Deep.array_max Deep.increment_all.
|
||||
|
||||
|
||||
(** * A slightly fancier deep embedding, adding unbounded loops *)
|
||||
|
||||
|
@ -690,10 +690,9 @@ Module Deeper.
|
|||
eapply invert_Return; eauto.
|
||||
simplify; auto.
|
||||
Qed.
|
||||
|
||||
Extraction "Deeper.ml" index_of.
|
||||
End Deeper.
|
||||
|
||||
Extraction "Deeper.ml" Deeper.index_of.
|
||||
|
||||
(** * Adding the possibility of program failure *)
|
||||
|
||||
|
@ -731,7 +730,7 @@ Module DeeperWithFail.
|
|||
| Stepped (h : heap) (c : cmd result)
|
||||
| Failed.
|
||||
|
||||
Implicit Arguments Failed [result].
|
||||
Arguments Failed {result}.
|
||||
|
||||
Fixpoint step {result} (c : cmd result) (h : heap) : stepResult result :=
|
||||
match c with
|
||||
|
@ -763,8 +762,6 @@ Module DeeperWithFail.
|
|||
end
|
||||
end.
|
||||
|
||||
Extraction "DeeperWithFail.ml" forever.
|
||||
|
||||
Inductive hoare_triple : assertion -> forall {result}, cmd result -> (result -> assertion) -> Prop :=
|
||||
| HtReturn : forall P {result : Set} (v : result),
|
||||
hoare_triple P (Return v) (fun r h => P h /\ r = v)
|
||||
|
@ -1047,7 +1044,7 @@ Module DeeperWithFail.
|
|||
reflexivity.
|
||||
Qed.
|
||||
|
||||
Hint Rewrite firstn_nochange fold_left_firstn using linear_arithmetic.
|
||||
Hint Rewrite firstn_nochange fold_left_firstn using linear_arithmetic : core.
|
||||
|
||||
Theorem heapfold_ok : forall {A : Set} (init : A) combine
|
||||
(ls : list nat) (f : A -> nat -> A),
|
||||
|
@ -1088,7 +1085,7 @@ Module DeeperWithFail.
|
|||
apply IHls; linear_arithmetic.
|
||||
Qed.
|
||||
|
||||
Hint Resolve le_max.
|
||||
Hint Resolve le_max : core.
|
||||
|
||||
Theorem array_max_ok : forall ls : list nat,
|
||||
{{ h ~> forall i, i < length ls -> h $! i = nth_default 0 ls i}}
|
||||
|
@ -1097,3 +1094,5 @@ Module DeeperWithFail.
|
|||
Proof.
|
||||
Admitted.
|
||||
End DeeperWithFail.
|
||||
|
||||
Extraction "DeeperWithFail.ml" DeeperWithFail.forever.
|
||||
|
|
|
@ -1071,7 +1071,7 @@ Ltac substring :=
|
|||
destruct N; simplify
|
||||
end; try linear_arithmetic; eauto; try equality.
|
||||
|
||||
Hint Resolve le_n_S.
|
||||
Hint Resolve le_n_S : core.
|
||||
|
||||
Lemma substring_le : forall s n m,
|
||||
length (substring n m s) <= m.
|
||||
|
@ -1105,7 +1105,7 @@ Proof.
|
|||
induct s1; substring.
|
||||
Qed.
|
||||
|
||||
Hint Resolve length_emp append_emp substring_le substring_split length_app1.
|
||||
Hint Resolve length_emp append_emp substring_le substring_split length_app1 : core.
|
||||
|
||||
Lemma substring_app_fst : forall s2 s1 n,
|
||||
length s1 = n
|
||||
|
@ -1151,7 +1151,7 @@ End sumbool_and.
|
|||
|
||||
Infix "&&" := sumbool_and (at level 40, left associativity).
|
||||
|
||||
Hint Extern 1 (_ <= _) => linear_arithmetic.
|
||||
Hint Extern 1 (_ <= _) => linear_arithmetic : core.
|
||||
|
||||
Section split.
|
||||
Variables P1 P2 : string -> Prop.
|
||||
|
@ -1217,7 +1217,7 @@ Section split.
|
|||
Defined.
|
||||
End split.
|
||||
|
||||
Implicit Arguments split [P1 P2].
|
||||
Arguments split [P1 P2].
|
||||
|
||||
(* And now, a few more boring lemmas. Rejoin at "BOREDOM VANQUISHED", if you
|
||||
* like. *)
|
||||
|
@ -1253,7 +1253,7 @@ Proof.
|
|||
induct s; substring.
|
||||
Qed.
|
||||
|
||||
Hint Extern 1 (String _ _ = String _ _) => f_equal.
|
||||
Hint Extern 1 (String _ _ = String _ _) => f_equal : core.
|
||||
|
||||
Lemma substring_stack : forall s n2 m1 m2,
|
||||
m1 <= m2
|
||||
|
@ -1337,7 +1337,7 @@ Section dec_star.
|
|||
(* Some new lemmas and hints about the [star] type family are useful. Rejoin
|
||||
* at BOREDOM DEMOLISHED to skip the details. *)
|
||||
|
||||
Hint Constructors star.
|
||||
Hint Constructors star : core.
|
||||
|
||||
Lemma star_empty : forall s,
|
||||
length s = 0
|
||||
|
@ -1365,14 +1365,14 @@ Section dec_star.
|
|||
end.
|
||||
Qed.
|
||||
|
||||
Hint Resolve star_empty star_singleton star_app.
|
||||
Hint Resolve star_empty star_singleton star_app : core.
|
||||
|
||||
Variable s : string.
|
||||
|
||||
Hint Extern 1 (exists i : nat, _) =>
|
||||
match goal with
|
||||
| [ H : P (String _ ?S) |- _ ] => exists (length S); simplify
|
||||
end.
|
||||
end : core.
|
||||
|
||||
Lemma star_inv : forall s,
|
||||
star P s
|
||||
|
@ -1426,7 +1426,7 @@ Section dec_star.
|
|||
* an index into [s] that splits [s] into a nonempty prefix and a suffix,
|
||||
* such that the prefix satisfies [P] and the suffix satisfies [P']. *)
|
||||
|
||||
Hint Extern 1 (_ \/ _) => linear_arithmetic.
|
||||
Hint Extern 1 (_ \/ _) => linear_arithmetic : core.
|
||||
|
||||
Definition dec_star'' : forall l : nat,
|
||||
{exists l', S l' <= l
|
||||
|
@ -1467,7 +1467,7 @@ Section dec_star.
|
|||
linear_arithmetic.
|
||||
Qed.
|
||||
|
||||
Hint Resolve star_length_contra star_length_flip substring_suffix_emp.
|
||||
Hint Resolve star_length_contra star_length_flip substring_suffix_emp : core.
|
||||
|
||||
(* The work of [dec_star''] is nested inside another linear search by
|
||||
* [dec_star'], which provides the final functionality we need, but for
|
||||
|
@ -1507,7 +1507,7 @@ Proof.
|
|||
equality.
|
||||
Qed.
|
||||
|
||||
Hint Resolve app_cong.
|
||||
Hint Resolve app_cong : core.
|
||||
|
||||
(* With these helper functions completed, the implementation of our [matches]
|
||||
* function is refreshingly straightforward. *)
|
||||
|
|
|
@ -487,7 +487,7 @@ Ltac substring :=
|
|||
destruct N; simplify
|
||||
end; try linear_arithmetic; eauto; try equality.
|
||||
|
||||
Hint Resolve le_n_S.
|
||||
Hint Resolve le_n_S : core.
|
||||
|
||||
Lemma substring_le : forall s n m,
|
||||
length (substring n m s) <= m.
|
||||
|
@ -521,7 +521,7 @@ Proof.
|
|||
induct s1; substring.
|
||||
Qed.
|
||||
|
||||
Hint Resolve length_emp append_emp substring_le substring_split length_app1.
|
||||
Hint Resolve length_emp append_emp substring_le substring_split length_app1 : core.
|
||||
|
||||
Lemma substring_app_fst : forall s2 s1 n,
|
||||
length s1 = n
|
||||
|
@ -563,7 +563,7 @@ End sumbool_and.
|
|||
|
||||
Infix "&&" := sumbool_and (at level 40, left associativity).
|
||||
|
||||
Hint Extern 1 (_ <= _) => linear_arithmetic.
|
||||
Hint Extern 1 (_ <= _) => linear_arithmetic : core.
|
||||
|
||||
Section split.
|
||||
Variables P1 P2 : string -> Prop.
|
||||
|
@ -599,7 +599,7 @@ Section split.
|
|||
Defined.
|
||||
End split.
|
||||
|
||||
Implicit Arguments split [P1 P2].
|
||||
Arguments split [P1 P2].
|
||||
|
||||
(* And now, a few more boring lemmas. Rejoin at "BOREDOM VANQUISHED", if you
|
||||
* like. *)
|
||||
|
@ -635,7 +635,7 @@ Proof.
|
|||
induct s; substring.
|
||||
Qed.
|
||||
|
||||
Hint Extern 1 (String _ _ = String _ _) => f_equal.
|
||||
Hint Extern 1 (String _ _ = String _ _) => f_equal : core.
|
||||
|
||||
Lemma substring_stack : forall s n2 m1 m2,
|
||||
m1 <= m2
|
||||
|
@ -715,7 +715,7 @@ Section dec_star.
|
|||
(* Some new lemmas and hints about the [star] type family are useful. Rejoin
|
||||
* at BOREDOM DEMOLISHED to skip the details. *)
|
||||
|
||||
Hint Constructors star.
|
||||
Hint Constructors star : core.
|
||||
|
||||
Lemma star_empty : forall s,
|
||||
length s = 0
|
||||
|
@ -743,14 +743,14 @@ Section dec_star.
|
|||
end.
|
||||
Qed.
|
||||
|
||||
Hint Resolve star_empty star_singleton star_app.
|
||||
Hint Resolve star_empty star_singleton star_app : core.
|
||||
|
||||
Variable s : string.
|
||||
|
||||
Hint Extern 1 (exists i : nat, _) =>
|
||||
match goal with
|
||||
| [ H : P (String _ ?S) |- _ ] => exists (length S); simplify
|
||||
end.
|
||||
end : core.
|
||||
|
||||
Lemma star_inv : forall s,
|
||||
star P s
|
||||
|
@ -789,7 +789,7 @@ Section dec_star.
|
|||
-> {P' (substring n' (length s - n') s)}
|
||||
+ {~ P' (substring n' (length s - n') s)}.
|
||||
|
||||
Hint Extern 1 (_ \/ _) => linear_arithmetic.
|
||||
Hint Extern 1 (_ \/ _) => linear_arithmetic : core.
|
||||
|
||||
Definition dec_star'' : forall l : nat,
|
||||
{exists l', S l' <= l
|
||||
|
@ -830,7 +830,7 @@ Section dec_star.
|
|||
linear_arithmetic.
|
||||
Qed.
|
||||
|
||||
Hint Resolve star_length_contra star_length_flip substring_suffix_emp.
|
||||
Hint Resolve star_length_contra star_length_flip substring_suffix_emp : core.
|
||||
|
||||
Definition dec_star' : forall n n' : nat, length s - n' <= n
|
||||
-> {star P (substring n' (length s - n') s)}
|
||||
|
@ -863,7 +863,7 @@ Proof.
|
|||
equality.
|
||||
Qed.
|
||||
|
||||
Hint Resolve app_cong.
|
||||
Hint Resolve app_cong : core.
|
||||
|
||||
Definition matches : forall P (r : regexp P) s, {P s} + {~ P s}.
|
||||
refine (fix F P (r : regexp P) s : {P s} + {~ P s} :=
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
Require Import Eqdep String Arith Omega Program Sets Relations Map Var Invariant Bool ModelCheck.
|
||||
Export String Arith Sets Relations Map Var Invariant Bool ModelCheck.
|
||||
Export Ascii String Arith Sets Relations Map Var Invariant Bool ModelCheck.
|
||||
Require Import List.
|
||||
Export List ListNotations.
|
||||
Open Scope string_scope.
|
||||
|
|
|
@ -586,6 +586,8 @@ Fixpoint formulaDenote (atomics : asgn) (f : formula) : Prop :=
|
|||
| Imp f1 f2 => formulaDenote atomics f1 -> formulaDenote atomics f2
|
||||
end.
|
||||
|
||||
Require Import ListSet.
|
||||
|
||||
Section my_tauto.
|
||||
Variable atomics : asgn.
|
||||
|
||||
|
@ -593,8 +595,6 @@ Section my_tauto.
|
|||
* module of the standard library, which (unsurprisingly) presents a view of
|
||||
* lists as sets. *)
|
||||
|
||||
Require Import ListSet.
|
||||
|
||||
(* The [eq_nat_dec] below is a richly typed equality test on [nat]s. We'll
|
||||
* get to the ideas behind it in a later class. *)
|
||||
Definition add (s : set propvar) (v : propvar) := set_add eq_nat_dec v s.
|
||||
|
|
|
@ -2,6 +2,7 @@ Require Import Frap.
|
|||
|
||||
Set Implicit Arguments.
|
||||
Set Asymmetric Patterns.
|
||||
Set Universe Polymorphism.
|
||||
|
||||
|
||||
(** * Proving Evenness *)
|
||||
|
@ -272,11 +273,11 @@ Fixpoint formulaDenote (atomics : asgn) (f : formula) : Prop :=
|
|||
| Imp f1 f2 => formulaDenote atomics f1 -> formulaDenote atomics f2
|
||||
end.
|
||||
|
||||
Require Import ListSet.
|
||||
|
||||
Section my_tauto.
|
||||
Variable atomics : asgn.
|
||||
|
||||
Require Import ListSet.
|
||||
|
||||
Definition add (s : set propvar) (v : propvar) := set_add eq_nat_dec v s.
|
||||
|
||||
Fixpoint allTrue (s : set propvar) : Prop :=
|
||||
|
|
2
Sets.v
2
Sets.v
|
@ -35,7 +35,7 @@ Section set.
|
|||
End set.
|
||||
|
||||
Infix "\in" := In (at level 70).
|
||||
Notation "[ P ]" := (check P).
|
||||
(*Notation "[ P ]" := (check P).*)
|
||||
Infix "\cup" := union (at level 40).
|
||||
Infix "\cap" := intersection (at level 40).
|
||||
Infix "\setminus" := minus (at level 40).
|
||||
|
|
|
@ -13,8 +13,8 @@ Set Asymmetric Patterns.
|
|||
Notation "m $! k" := (match m $? k with Some n => n | None => O end) (at level 30).
|
||||
Definition heap := fmap nat nat.
|
||||
|
||||
Hint Extern 1 (_ <= _) => linear_arithmetic.
|
||||
Hint Extern 1 (@eq nat _ _) => linear_arithmetic.
|
||||
Hint Extern 1 (_ <= _) => linear_arithmetic : core.
|
||||
Hint Extern 1 (@eq nat _ _) => linear_arithmetic : core.
|
||||
|
||||
|
||||
(** * An object language with shared-memory concurrency *)
|
||||
|
@ -203,7 +203,7 @@ Definition trsys_ofL (h : heap) (l : locks) (c : cmd) := {|
|
|||
|
||||
(* Now we prove some basic facts; commentary resumes before [step_runLocal]. *)
|
||||
|
||||
Hint Constructors step stepL.
|
||||
Hint Constructors step stepL : core.
|
||||
|
||||
Lemma run_Return : forall h l r h' l' c,
|
||||
step^* (h, l, Return r) (h', l', c)
|
||||
|
@ -265,7 +265,7 @@ Proof.
|
|||
eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve StepBindRecur_star StepParRecur1_star StepParRecur2_star.
|
||||
Hint Resolve StepBindRecur_star StepParRecur1_star StepParRecur2_star : core.
|
||||
|
||||
Lemma runLocal_idem : forall c, runLocal (runLocal c) = runLocal c.
|
||||
Proof.
|
||||
|
@ -722,7 +722,7 @@ Proof.
|
|||
first_order; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Constructors summarize.
|
||||
Hint Constructors summarize : core.
|
||||
|
||||
(* The next two lemmas show that, once a summary is accurate for a command, it
|
||||
* remains accurate throughout the whole execution lifetime of the command. *)
|
||||
|
@ -776,25 +776,25 @@ Inductive boundRunningTime : cmd -> nat -> Prop :=
|
|||
|
||||
(* Perhaps surprisingly, there exist commands that have no finite time bounds!
|
||||
* Mixed-embedding languages often have these counterintuitive properties. *)
|
||||
Fixpoint scribbly (n : nat) : cmd :=
|
||||
match n with
|
||||
| O => Return 0
|
||||
| S n' => _ <- Write n' 0; scribbly n'
|
||||
end.
|
||||
|
||||
Lemma scribbly_time : forall n m,
|
||||
boundRunningTime (scribbly n) m
|
||||
-> m >= n.
|
||||
Proof.
|
||||
induct n; invert 1; auto.
|
||||
invert H2.
|
||||
specialize (H4 n0).
|
||||
apply IHn in H4.
|
||||
linear_arithmetic.
|
||||
Qed.
|
||||
|
||||
Theorem boundRunningTime_not_total : exists c, forall n, ~boundRunningTime c n.
|
||||
Proof.
|
||||
Fixpoint scribbly (n : nat) : cmd :=
|
||||
match n with
|
||||
| O => Return 0
|
||||
| S n' => _ <- Write n' 0; scribbly n'
|
||||
end.
|
||||
|
||||
Lemma scribbly_time : forall n m,
|
||||
boundRunningTime (scribbly n) m
|
||||
-> m >= n.
|
||||
Proof.
|
||||
induct n; invert 1; auto.
|
||||
invert H2.
|
||||
specialize (H4 n0).
|
||||
apply IHn in H4.
|
||||
linear_arithmetic.
|
||||
Qed.
|
||||
|
||||
exists (n <- Read 0; scribbly n); propositional.
|
||||
invert H.
|
||||
specialize (H4 (S n2)).
|
||||
|
@ -802,7 +802,7 @@ Proof.
|
|||
linear_arithmetic.
|
||||
Qed.
|
||||
|
||||
Hint Constructors boundRunningTime.
|
||||
Hint Constructors boundRunningTime : core.
|
||||
|
||||
(* Key property: taking a step of execution lowers the running-time bound. *)
|
||||
Lemma boundRunningTime_step : forall c n h l h' l',
|
||||
|
@ -1029,7 +1029,7 @@ Inductive stepsi : nat -> heap * locks * cmd -> heap * locks * cmd -> Prop :=
|
|||
-> stepsi i st2 st3
|
||||
-> stepsi (S i) st1 st3.
|
||||
|
||||
Hint Constructors stepsi.
|
||||
Hint Constructors stepsi : core.
|
||||
|
||||
Theorem steps_stepsi : forall st1 st2,
|
||||
step^* st1 st2
|
||||
|
@ -1038,7 +1038,7 @@ Proof.
|
|||
induct 1; first_order; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Constructors stepC.
|
||||
Hint Constructors stepC : core.
|
||||
|
||||
(* The next few lemmas are quite technical. Commentary resumes for
|
||||
* [translate_trace]. *)
|
||||
|
|
Loading…
Reference in a new issue