From 8c67fc54681d40ab2c4bfe6c3497f29c2d8718d3 Mon Sep 17 00:00:00 2001 From: Adam Chlipala Date: Fri, 29 Apr 2016 17:37:17 -0400 Subject: [PATCH] ConcurrentSeparationLogic chapter: proofreading --- frap_book.tex | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/frap_book.tex b/frap_book.tex index a53040d..d0c4cfd 100644 --- a/frap_book.tex +++ b/frap_book.tex @@ -3983,7 +3983,7 @@ Two lemmas express crucial techniques to isolate elements within iterated conjun \end{proof} \begin{lemma}\label{cslinvariant} - If $\hoare{P}{c}{Q}$, and if a heap $h$ satisfies the predicate $(P * \bigstar{\ell}{L}{\mathcal I(\ell)})$, then an invariant of the system starting at state $(h, \emptyset, c)$ is: for reachable state $(h', l', c')$, there exists $P'$ where $\hoare{P'}{c'}{Q}$, such that $h'$ satisfies $(P' * \bigstar{\ell}{L}{\guarded{\ell \notin L}{\mathcal I(\ell)}})$. + If $\hoare{P}{c}{Q}$, and if a heap $h$ satisfies the predicate $(P * \bigstar{\ell}{L}{\mathcal I(\ell)})$, then an invariant of the system starting at state $(h, \emptyset, c)$ is: for reachable state $(h', l', c')$, there exists $P'$ where $\hoare{P'}{c'}{Q}$, such that $h'$ satisfies $(P' * \bigstarp{\ell}{L}{\guarded{\ell \notin l'}{\mathcal I(\ell)}})$. \end{lemma} \begin{proof} By invariant induction\index{invariant induction}, using Lemma \ref{nonelocked} for the base case and Lemma \ref{cslpreservation} for the induction step, the latter with $R = \emp$. @@ -3996,7 +3996,7 @@ Two lemmas express crucial techniques to isolate elements within iterated conjun By induction on the derivation of $\hoare{P}{c}{Q}$. \end{proof} -The overall soundness proof proceeds by invariant weakening\index{invariant weakening} to the invariant established by Lemma \ref{cslinvariant}. +The overall soundness proof proceeds by invariant weakening\index{invariant weakening} with the invariant established by Lemma \ref{cslinvariant}. We prove the inclusion of new invariant in old by Lemma \ref{cslprogress}.