mirror of
https://github.com/achlipala/frap.git
synced 2025-01-05 23:54:14 +00:00
OperationalSemantics: equivalence of big and small
This commit is contained in:
parent
db643cbfc4
commit
918fcaa29b
1 changed files with 223 additions and 0 deletions
|
@ -225,3 +225,226 @@ Proof.
|
|||
f_equal.
|
||||
ring.
|
||||
Qed.
|
||||
|
||||
|
||||
(** * Small-step semantics *)
|
||||
|
||||
Inductive step : valuation * cmd -> valuation * cmd -> Prop :=
|
||||
| StepAssign : forall v x e,
|
||||
step (v, Assign x e) (v $+ (x, interp e v), Skip)
|
||||
| StepSeq1 : forall v c1 c2 v' c1',
|
||||
step (v, c1) (v', c1')
|
||||
-> step (v, Sequence c1 c2) (v', Sequence c1' c2)
|
||||
| StepSeq2 : forall v c2,
|
||||
step (v, Sequence Skip c2) (v, c2)
|
||||
| StepIfTrue : forall v e then_ else_,
|
||||
interp e v <> 0
|
||||
-> step (v, If e then_ else_) (v, then_)
|
||||
| StepIfFalse : forall v e then_ else_,
|
||||
interp e v = 0
|
||||
-> step (v, If e then_ else_) (v, else_)
|
||||
| StepWhileTrue : forall v e body,
|
||||
interp e v <> 0
|
||||
-> step (v, While e body) (v, Sequence body (While e body))
|
||||
| StepWhileFalse : forall v e body,
|
||||
interp e v = 0
|
||||
-> step (v, While e body) (v, Skip).
|
||||
|
||||
(* Here's a small-step factorial execution. *)
|
||||
Theorem factorial_2_small : exists v, step^* ($0 $+ ("input", 2), factorial) (v, Skip)
|
||||
/\ v $? "output" = Some 2.
|
||||
Proof.
|
||||
eexists; propositional.
|
||||
|
||||
econstructor.
|
||||
econstructor.
|
||||
econstructor.
|
||||
econstructor.
|
||||
apply StepSeq2.
|
||||
econstructor.
|
||||
econstructor.
|
||||
simplify.
|
||||
equality.
|
||||
econstructor.
|
||||
econstructor.
|
||||
econstructor.
|
||||
econstructor.
|
||||
econstructor.
|
||||
econstructor.
|
||||
apply StepSeq2.
|
||||
econstructor.
|
||||
econstructor.
|
||||
econstructor.
|
||||
econstructor.
|
||||
apply StepSeq2.
|
||||
econstructor.
|
||||
econstructor.
|
||||
simplify.
|
||||
equality.
|
||||
econstructor.
|
||||
econstructor.
|
||||
econstructor.
|
||||
econstructor.
|
||||
econstructor.
|
||||
econstructor.
|
||||
apply StepSeq2.
|
||||
econstructor.
|
||||
econstructor.
|
||||
econstructor.
|
||||
econstructor.
|
||||
apply StepSeq2.
|
||||
econstructor.
|
||||
apply StepWhileFalse.
|
||||
simplify.
|
||||
equality.
|
||||
econstructor.
|
||||
|
||||
simplify.
|
||||
equality.
|
||||
Qed.
|
||||
|
||||
Ltac step1 :=
|
||||
apply TrcRefl || eapply TrcFront
|
||||
|| apply StepAssign || apply StepSeq2 || eapply StepSeq1
|
||||
|| (apply StepIfTrue; [ simplify; equality ])
|
||||
|| (apply StepIfFalse; [ simplify; equality ])
|
||||
|| (eapply StepWhileTrue; [ simplify; equality ])
|
||||
|| (apply StepWhileFalse; [ simplify; equality ]).
|
||||
Ltac stepper := simplify; try equality; repeat step1.
|
||||
|
||||
Theorem factorial_2_small_snazzy : exists v, step^* ($0 $+ ("input", 2), factorial) (v, Skip)
|
||||
/\ v $? "output" = Some 2.
|
||||
Proof.
|
||||
eexists; propositional.
|
||||
|
||||
stepper.
|
||||
stepper.
|
||||
Qed.
|
||||
|
||||
(* It turns out that these two semantics styles are equivalent. Let's prove
|
||||
* it. *)
|
||||
|
||||
Lemma step_star_Seq : forall v c1 c2 v' c1',
|
||||
step^* (v, c1) (v', c1')
|
||||
-> step^* (v, Sequence c1 c2) (v', Sequence c1' c2).
|
||||
Proof.
|
||||
induct 1.
|
||||
|
||||
constructor.
|
||||
|
||||
cases y.
|
||||
econstructor.
|
||||
econstructor.
|
||||
eassumption.
|
||||
apply IHtrc.
|
||||
equality.
|
||||
equality.
|
||||
Qed.
|
||||
|
||||
Theorem big_small : forall v c v', eval v c v'
|
||||
-> step^* (v, c) (v', Skip).
|
||||
Proof.
|
||||
induct 1; simplify.
|
||||
|
||||
constructor.
|
||||
|
||||
econstructor.
|
||||
constructor.
|
||||
constructor.
|
||||
|
||||
eapply trc_trans.
|
||||
apply step_star_Seq.
|
||||
eassumption.
|
||||
econstructor.
|
||||
apply StepSeq2.
|
||||
assumption.
|
||||
|
||||
econstructor.
|
||||
constructor.
|
||||
assumption.
|
||||
assumption.
|
||||
|
||||
econstructor.
|
||||
apply StepIfFalse.
|
||||
assumption.
|
||||
assumption.
|
||||
|
||||
econstructor.
|
||||
constructor.
|
||||
assumption.
|
||||
eapply trc_trans.
|
||||
apply step_star_Seq.
|
||||
eassumption.
|
||||
econstructor.
|
||||
apply StepSeq2.
|
||||
assumption.
|
||||
|
||||
econstructor.
|
||||
apply StepWhileFalse.
|
||||
assumption.
|
||||
constructor.
|
||||
Qed.
|
||||
|
||||
Lemma small_big'' : forall v c v' c', step (v, c) (v', c')
|
||||
-> forall v'', eval v' c' v''
|
||||
-> eval v c v''.
|
||||
Proof.
|
||||
induct 1; simplify.
|
||||
|
||||
invert H.
|
||||
constructor.
|
||||
|
||||
invert H0.
|
||||
econstructor.
|
||||
apply IHstep.
|
||||
eassumption.
|
||||
assumption.
|
||||
|
||||
econstructor.
|
||||
constructor.
|
||||
assumption.
|
||||
|
||||
constructor.
|
||||
assumption.
|
||||
assumption.
|
||||
|
||||
apply EvalIfFalse.
|
||||
assumption.
|
||||
assumption.
|
||||
|
||||
invert H0.
|
||||
econstructor.
|
||||
assumption.
|
||||
eassumption.
|
||||
assumption.
|
||||
|
||||
invert H0.
|
||||
apply EvalWhileFalse.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Lemma small_big' : forall v c v' c', step^* (v, c) (v', c')
|
||||
-> forall v'', eval v' c' v''
|
||||
-> eval v c v''.
|
||||
Proof.
|
||||
induct 1; simplify.
|
||||
|
||||
trivial.
|
||||
|
||||
cases y.
|
||||
eapply small_big''.
|
||||
eassumption.
|
||||
eapply IHtrc.
|
||||
equality.
|
||||
equality.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Theorem small_big : forall v c v', step^* (v, c) (v', Skip)
|
||||
-> eval v c v'.
|
||||
Proof.
|
||||
simplify.
|
||||
eapply small_big'.
|
||||
eassumption.
|
||||
constructor.
|
||||
Qed.
|
||||
|
|
Loading…
Reference in a new issue