From 95a28b26f6fccb40d550f8eaf6923e34708bae97 Mon Sep 17 00:00:00 2001 From: Adam Chlipala Date: Sun, 28 Mar 2021 14:51:12 -0400 Subject: [PATCH] EvaluationContexts: mutable variables --- EvaluationContexts.v | 433 ++++++++++++++++++++++++++++++++++++++++--- 1 file changed, 412 insertions(+), 21 deletions(-) diff --git a/EvaluationContexts.v b/EvaluationContexts.v index 3c02798..938dffc 100644 --- a/EvaluationContexts.v +++ b/EvaluationContexts.v @@ -111,13 +111,6 @@ Module Stlc. Local Hint Constructors value plug step0 step hasty : core. - Infix "-->" := Fun (at level 60, right associativity). - Coercion Const : nat >-> exp. - Infix "^+^" := Plus (at level 50). - Coercion Var : var >-> exp. - Notation "\ x , e" := (Abs x e) (at level 51). - Infix "@" := App (at level 49, left associativity). - (** * Now we adapt the automated proof of type soundness. *) Ltac t0 := match goal with @@ -451,13 +444,6 @@ Module StlcPairs. Local Hint Constructors value plug step0 step hasty : core. - Infix "-->" := Fun (at level 60, right associativity). - Coercion Const : nat >-> exp. - Infix "^+^" := Plus (at level 50). - Coercion Var : var >-> exp. - Notation "\ x , e" := (Abs x e) (at level 51). - Infix "@" := App (at level 49, left associativity). - Ltac t0 := match goal with | [ H : ex _ |- _ ] => invert H | [ H : _ /\ _ |- _ ] => invert H @@ -760,13 +746,6 @@ Module StlcSums. Local Hint Constructors value plug step0 step hasty : core. - Infix "-->" := Fun (at level 60, right associativity). - Coercion Const : nat >-> exp. - Infix "^+^" := Plus (at level 50). - Coercion Var : var >-> exp. - Notation "\ x , e" := (Abs x e) (at level 51). - Infix "@" := App (at level 49, left associativity). - Ltac t0 := match goal with | [ H : ex _ |- _ ] => invert H | [ H : _ /\ _ |- _ ] => invert H @@ -881,3 +860,415 @@ Module StlcSums. apply invariant_induction; simplify; eauto; equality. Qed. End StlcSums. + + +(** * Mutable Variables *) + +(* Let's show how to add in another classic language feature, showing off how + * abstracting with the idea of evaluation contexts saves us a lot of effort + * adapting old definitions. So far, variables have been read-only, but we can + * easily enough make them mutable. The types of some of our relations will + * change, but surprisingly much will remain intact. *) + +Module StlcMutable. + Inductive exp : Set := + | Var (x : var) + | Const (n : nat) + | Plus (e1 e2 : exp) + | Abs (x : var) (e1 : exp) + | App (e1 e2 : exp) + | Pair (e1 e2 : exp) + | Fst (e1 : exp) + | Snd (e2 : exp) + | Inl (e1 : exp) + | Inr (e2 : exp) + | Match (e' : exp) (x1 : var) (e1 : exp) (x2 : var) (e2 : exp) + + (* New cases: *) + | GetVar (x : var) + | SetVar (x : var) (e : exp). + (* Note that we are distinguishing between mutable and immutable variables, + * keeping the latter to bind in [Abs] and [Match]. *) + + Inductive value : exp -> Prop := + | VConst : forall n, value (Const n) + | VAbs : forall x e1, value (Abs x e1) + | VPair : forall v1 v2, value v1 -> value v2 -> value (Pair v1 v2) + | VInl : forall v, value v -> value (Inl v) + | VInr : forall v, value v -> value (Inr v). + + Fixpoint subst (e1 : exp) (x : string) (e2 : exp) : exp := + match e2 with + | Var y => if y ==v x then e1 else Var y + | Const n => Const n + | Plus e2' e2'' => Plus (subst e1 x e2') (subst e1 x e2'') + | Abs y e2' => Abs y (if y ==v x then e2' else subst e1 x e2') + | App e2' e2'' => App (subst e1 x e2') (subst e1 x e2'') + | Pair e2' e2'' => Pair (subst e1 x e2') (subst e1 x e2'') + | Fst e2' => Fst (subst e1 x e2') + | Snd e2' => Snd (subst e1 x e2') + | Inl e2' => Inl (subst e1 x e2') + | Inr e2' => Inr (subst e1 x e2') + | Match e2' x1 e21 x2 e22 => Match (subst e1 x e2') + x1 (if x1 ==v x then e21 else subst e1 x e21) + x2 (if x2 ==v x then e22 else subst e1 x e22) + | GetVar y => GetVar y + | SetVar y e2' => SetVar y (subst e1 x e2') + end. + + Inductive context : Set := + | Hole : context + | Plus1 : context -> exp -> context + | Plus2 : exp -> context -> context + | App1 : context -> exp -> context + | App2 : exp -> context -> context + | Pair1 : context -> exp -> context + | Pair2 : exp -> context -> context + | Fst1 : context -> context + | Snd1 : context -> context + | Inl1 : context -> context + | Inr1 : context -> context + | Match1 : context -> var -> exp -> var -> exp -> context + (* New case: *) + | SetVar1 : var -> context -> context. + + Inductive plug : context -> exp -> exp -> Prop := + | PlugHole : forall e, plug Hole e e + | PlugPlus1 : forall e e' C e2, + plug C e e' + -> plug (Plus1 C e2) e (Plus e' e2) + | PlugPlus2 : forall e e' v1 C, + value v1 + -> plug C e e' + -> plug (Plus2 v1 C) e (Plus v1 e') + | PlugApp1 : forall e e' C e2, + plug C e e' + -> plug (App1 C e2) e (App e' e2) + | PlugApp2 : forall e e' v1 C, + value v1 + -> plug C e e' + -> plug (App2 v1 C) e (App v1 e') + | PlugPair1 : forall e e' C e2, + plug C e e' + -> plug (Pair1 C e2) e (Pair e' e2) + | PlugPair2 : forall e e' v1 C, + value v1 + -> plug C e e' + -> plug (Pair2 v1 C) e (Pair v1 e') + | PlugFst1 : forall e e' C, + plug C e e' + -> plug (Fst1 C) e (Fst e') + | PlugSnd1 : forall e e' C, + plug C e e' + -> plug (Snd1 C) e (Snd e') + | PlugInl1 : forall e e' C, + plug C e e' + -> plug (Inl1 C) e (Inl e') + | PlugInr1 : forall e e' C, + plug C e e' + -> plug (Inr1 C) e (Inr e') + | PluMatch1 : forall e e' C x1 e1 x2 e2, + plug C e e' + -> plug (Match1 C x1 e1 x2 e2) e (Match e' x1 e1 x2 e2) + + (* Our new plugging rules *) + | PluSetVar1 : forall x e e' C, + plug C e e' + -> plug (SetVar1 x C) e (SetVar x e'). + + Definition valuation := fmap var exp. + + Inductive step0 : valuation * exp -> valuation * exp -> Prop := + | Beta : forall env x e v, + value v + -> step0 (env, App (Abs x e) v) (env, subst v x e) + | Add : forall env n1 n2, + step0 (env, Plus (Const n1) (Const n2)) (env, Const (n1 + n2)) + | FstPair : forall env v1 v2, + value v1 + -> value v2 + -> step0 (env, Fst (Pair v1 v2)) (env, v1) + | SndPair : forall env v1 v2, + value v1 + -> value v2 + -> step0 (env, Snd (Pair v1 v2)) (env, v2) + | MatchInl : forall env v x1 e1 x2 e2, + value v + -> step0 (env, Match (Inl v) x1 e1 x2 e2) (env, subst v x1 e1) + | MatchInr : forall env v x1 e1 x2 e2, + value v + -> step0 (env, Match (Inr v) x1 e1 x2 e2) (env, subst v x2 e2) + | Read : forall env x v, + env $? x = Some v + -> step0 (env, GetVar x) (env, v) + | Overwrite : forall env x v, + value v + -> step0 (env, SetVar x v) (env $+ (x, v), v). + + Inductive step : valuation * exp -> valuation * exp -> Prop := + | StepRule : forall C env1 e1 env2 e2 e1' e2', + plug C e1 e1' + -> plug C e2 e2' + -> step0 (env1, e1) (env2, e2) + -> step (env1, e1') (env2, e2'). + + Definition trsys_of (env : valuation) (e : exp) := {| + Initial := {(env, e)}; + Step := step + |}. + + + Inductive type := + | Nat + | Fun (dom ran : type) + | Prod (t1 t2 : type) + | Sum (t1 t2 : type). + + (* Now there will be two typing contexts, one for mutable variables and one + * for immutable. *) + Inductive hasty (M : fmap var type) : fmap var type -> exp -> type -> Prop := + | HtVar : forall G x t, + G $? x = Some t + -> hasty M G (Var x) t + | HtConst : forall G n, + hasty M G (Const n) Nat + | HtPlus : forall G e1 e2, + hasty M G e1 Nat + -> hasty M G e2 Nat + -> hasty M G (Plus e1 e2) Nat + | HtAbs : forall G x e1 t1 t2, + hasty M (G $+ (x, t1)) e1 t2 + -> hasty M G (Abs x e1) (Fun t1 t2) + | HtApp : forall G e1 e2 t1 t2, + hasty M G e1 (Fun t1 t2) + -> hasty M G e2 t1 + -> hasty M G (App e1 e2) t2 + | HtPair : forall G e1 e2 t1 t2, + hasty M G e1 t1 + -> hasty M G e2 t2 + -> hasty M G (Pair e1 e2) (Prod t1 t2) + | HtFst : forall G e1 t1 t2, + hasty M G e1 (Prod t1 t2) + -> hasty M G (Fst e1) t1 + | HtSnd : forall G e1 t1 t2, + hasty M G e1 (Prod t1 t2) + -> hasty M G (Snd e1) t2 + | HtInl : forall G e1 t1 t2, + hasty M G e1 t1 + -> hasty M G (Inl e1) (Sum t1 t2) + | HtInr : forall G e1 t1 t2, + hasty M G e1 t2 + -> hasty M G (Inr e1) (Sum t1 t2) + | HtMatch : forall G e t1 t2 x1 e1 x2 e2 t, + hasty M G e (Sum t1 t2) + -> hasty M (G $+ (x1, t1)) e1 t + -> hasty M (G $+ (x2, t2)) e2 t + -> hasty M G (Match e x1 e1 x2 e2) t + + (* New cases: *) + | HtGetVar : forall G x t, + M $? x = Some t + -> hasty M G (GetVar x) t + | HtSetVar : forall G x e t, + M $? x = Some t + -> hasty M G e t + -> hasty M G (SetVar x e) t. + + Local Hint Constructors value plug step0 step hasty : core. + + (* Let's characterize what makes a typing context and a variable valuation + * compatible. *) + Definition compatible (M : fmap var type) (env : valuation) := + forall x t, M $? x = Some t + -> exists v, env $? x = Some v + /\ hasty M $0 v t. + + Ltac t0 := match goal with + | [ H : ex _ |- _ ] => invert H + | [ H : _ /\ _ |- _ ] => invert H + | [ |- context[?x ==v ?y] ] => cases (x ==v y) + | [ H : Some _ = Some _ |- _ ] => invert H + + | [ H : step _ _ |- _ ] => invert H + | [ H : step0 _ _ |- _ ] => invert1 H + (* Add a few extra underscores below, for new [hasty] argument. *) + | [ H : hasty _ _ ?e _, H' : value ?e |- _ ] => invert H'; invert H; [] + | [ H : hasty _ _ ?e _, H' : value ?e |- _ ] => invert H'; invert H; [|] + + | [ H : hasty _ _ _ _ |- _ ] => invert1 H + | [ H : plug _ _ _ |- _ ] => invert1 H + + (* New cases: *) + | [ H1 : compatible ?M ?env, H2 : ?M $? ?x = Some _ |- _ ] => + (assert (exists v, env $? x = Some v) by eauto; fail 1) + || (pose proof (H1 _ _ H2); first_order) + | [ H1 : forall env, compatible ?M env -> _, H2 : compatible ?M _ |- _ ] => + specialize (H1 _ H2); first_order + end; subst. + + Ltac t := simplify; propositional; repeat (t0; simplify); try equality; eauto 7. + + Lemma progress : forall M e t, + hasty M $0 e t + -> forall env, compatible M env + -> value e + \/ exists st', step (env, e) st'. + Proof. + induct 1; t. + Qed. + + Lemma weakening_override : forall (G G' : fmap var type) x t, + (forall x' t', G $? x' = Some t' -> G' $? x' = Some t') + -> (forall x' t', G $+ (x, t) $? x' = Some t' + -> G' $+ (x, t) $? x' = Some t'). + Proof. + simplify. + cases (x ==v x'); simplify; eauto. + Qed. + + Local Hint Resolve weakening_override : core. + + Lemma weakening : forall M G e t, hasty M G e t + -> forall G', (forall x t, G $? x = Some t -> G' $? x = Some t) + -> hasty M G' e t. + Proof. + induct 1; t. + Qed. + + Local Hint Resolve weakening : core. + + Lemma hasty_change : forall M G e t, + hasty M G e t + -> forall G', G' = G + -> hasty M G' e t. + Proof. + t. + Qed. + + Local Hint Resolve hasty_change : core. + + Lemma substitution : forall M G x t' e t e', + hasty M (G $+ (x, t')) e t + -> hasty M $0 e' t' + -> hasty M G (subst e' x e) t. + Proof. + induct 1; t. + Qed. + + Local Hint Resolve substitution : core. + + Lemma compatible_bind : forall M env x v t, + compatible M env + -> M $? x = Some t + -> hasty M $0 v t + -> compatible M (env $+ (x, v)). + Proof. + unfold compatible; first_order. + cases (x ==v x0); subst; simplify. + rewrite H0 in H2. + invert H2. + eauto. + apply H in H0; first_order. + Qed. + + Local Hint Resolve compatible_bind : core. + + Lemma compatible_hasty : forall M env x v t, + compatible M env + -> env $? x = Some v + -> M $? x = Some t + -> hasty M $0 v t. + Proof. + t. + specialize (H _ _ H1); first_order. + rewrite H0 in H. + invert H. + assumption. + Qed. + + Local Hint Immediate compatible_hasty : core. + + Lemma preservation0_exp : forall M env1 e1 env2 e2, + step0 (env1, e1) (env2, e2) + -> forall t, hasty M $0 e1 t + -> compatible M env1 + -> hasty M $0 e2 t. + Proof. + invert 1; t. + Qed. + + Lemma preservation0_env : forall M env1 e1 env2 e2, + step0 (env1, e1) (env2, e2) + -> forall t, hasty M $0 e1 t + -> compatible M env1 + -> compatible M env2. + Proof. + invert 1; t. + Qed. + + Local Hint Resolve preservation0_exp preservation0_env : core. + + Lemma preservation'_exp : forall M C e1 e1', + plug C e1 e1' + -> forall e2 e2' t env1 env2, plug C e2 e2' + -> step0 (env1, e1) (env2, e2) + -> hasty M $0 e1' t + -> compatible M env1 + -> hasty M $0 e2' t. + Proof. + induct 1; t. + Qed. + + Local Hint Resolve preservation'_exp : core. + + Lemma preservation'_env' : forall M C e1 e1', + plug C e1 e1' + -> forall t e2 env1 env2, step0 (env1, e1) (env2, e2) + -> hasty M $0 e1' t + -> compatible M env1 + -> compatible M env2. + Proof. + induct 1; t. + Qed. + + Lemma preservation'_env : forall M C e1 e1' t e2 env1 env2, + step0 (env1, e1) (env2, e2) + -> plug C e1 e1' + -> hasty M $0 e1' t + -> compatible M env1 + -> compatible M env2. + Proof. + simplify; eapply preservation'_env' with (e2 := e2); eauto. + Qed. + + Local Hint Immediate preservation'_env : core. + + Lemma preservation : forall M env1 e1 env2 e2, + step (env1, e1) (env2, e2) + -> forall t, hasty M $0 e1 t + -> compatible M env1 + -> hasty M $0 e2 t /\ compatible M env2. + Proof. + invert 1; t. + Qed. + + Local Hint Resolve progress preservation : core. + + Theorem safety : forall M env e t, hasty M $0 e t + -> compatible M env + -> invariantFor (trsys_of env e) + (fun st => value (snd st) + \/ exists st', step st st'). + Proof. + simplify. + apply invariant_weaken with (invariant1 := fun st => hasty M $0 (snd st) t /\ compatible M (fst st)); eauto. + apply invariant_induction; simplify. + propositional; subst; auto. + invert H1. + cases s; cases s'; simplify. + eauto. + propositional. + cases s; simplify. + eauto. + Qed. +End StlcMutable.