mirror of
https://github.com/achlipala/frap.git
synced 2024-11-10 00:07:51 +00:00
LambdaCalculusAndTypeSoundness: a more manual soundness proof
This commit is contained in:
parent
23955eb536
commit
9ce653261c
1 changed files with 327 additions and 48 deletions
|
@ -107,7 +107,320 @@ Inductive hasty : fmap var type -> exp -> type -> Prop :=
|
|||
|
||||
Hint Constructors value plug step0 step hasty.
|
||||
|
||||
(* Some automation *)
|
||||
|
||||
(** * Let's prove type soundness first without much automation. *)
|
||||
|
||||
(* Now we're ready for the first of the two key properties, to show that "has
|
||||
* type t in the empty typing context" is an invariant. *)
|
||||
Lemma progress : forall e t,
|
||||
hasty $0 e t
|
||||
-> value e
|
||||
\/ (exists e' : exp, step e e').
|
||||
Proof.
|
||||
induct 1; simplify; try equality.
|
||||
|
||||
left.
|
||||
constructor.
|
||||
|
||||
propositional.
|
||||
|
||||
right.
|
||||
invert H1; invert H.
|
||||
invert H2; invert H0.
|
||||
exists (Const (n + n0)).
|
||||
eapply StepRule with (C := Hole).
|
||||
eauto.
|
||||
eauto.
|
||||
constructor.
|
||||
|
||||
invert H2.
|
||||
right.
|
||||
invert H3.
|
||||
exists (Plus e1 x).
|
||||
eapply StepRule with (C := Plus2 e1 C).
|
||||
eauto.
|
||||
eauto.
|
||||
assumption.
|
||||
|
||||
invert H1.
|
||||
invert H3.
|
||||
right.
|
||||
exists (Plus x e2).
|
||||
eapply StepRule with (C := Plus1 C e2).
|
||||
eauto.
|
||||
eauto.
|
||||
assumption.
|
||||
|
||||
invert H1.
|
||||
invert H3.
|
||||
right.
|
||||
exists (Plus x e2).
|
||||
eapply StepRule with (C := Plus1 C e2).
|
||||
eauto.
|
||||
eauto.
|
||||
assumption.
|
||||
|
||||
left.
|
||||
constructor.
|
||||
|
||||
propositional.
|
||||
|
||||
right.
|
||||
invert H1; invert H.
|
||||
exists (subst e2 x e0).
|
||||
eapply StepRule with (C := Hole).
|
||||
eauto.
|
||||
eauto.
|
||||
constructor.
|
||||
assumption.
|
||||
|
||||
invert H2.
|
||||
right.
|
||||
invert H3.
|
||||
exists (App e1 x).
|
||||
eapply StepRule with (C := App2 e1 C).
|
||||
eauto.
|
||||
eauto.
|
||||
assumption.
|
||||
|
||||
invert H1.
|
||||
invert H3.
|
||||
right.
|
||||
exists (App x e2).
|
||||
eapply StepRule with (C := App1 C e2).
|
||||
eauto.
|
||||
eauto.
|
||||
assumption.
|
||||
|
||||
invert H1.
|
||||
invert H3.
|
||||
right.
|
||||
exists (App x e2).
|
||||
eapply StepRule with (C := App1 C e2).
|
||||
eauto.
|
||||
eauto.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
(* Inclusion between typing contexts is preserved by adding the same new mapping
|
||||
* to both. *)
|
||||
Lemma weakening_override : forall (G G' : fmap var type) x t,
|
||||
(forall x' t', G $? x' = Some t' -> G' $? x' = Some t')
|
||||
-> (forall x' t', G $+ (x, t) $? x' = Some t'
|
||||
-> G' $+ (x, t) $? x' = Some t').
|
||||
Proof.
|
||||
simplify.
|
||||
cases (x ==v x'); simplify; eauto.
|
||||
Qed.
|
||||
|
||||
(** Raising a typing derivation to a larger typing context *)
|
||||
Lemma weakening : forall G e t,
|
||||
hasty G e t
|
||||
-> forall G', (forall x t, G $? x = Some t -> G' $? x = Some t)
|
||||
-> hasty G' e t.
|
||||
Proof.
|
||||
induct 1; simplify.
|
||||
|
||||
constructor.
|
||||
apply H0.
|
||||
assumption.
|
||||
|
||||
constructor.
|
||||
|
||||
constructor.
|
||||
apply IHhasty1.
|
||||
assumption.
|
||||
apply IHhasty2.
|
||||
assumption.
|
||||
|
||||
constructor.
|
||||
apply IHhasty.
|
||||
apply weakening_override.
|
||||
assumption.
|
||||
|
||||
econstructor.
|
||||
apply IHhasty1.
|
||||
assumption.
|
||||
apply IHhasty2.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
(* Replacing a variable with a properly typed term preserves typing. *)
|
||||
Lemma substitution : forall G x t' e t e',
|
||||
hasty (G $+ (x, t')) e t
|
||||
-> hasty $0 e' t'
|
||||
-> hasty G (subst e' x e) t.
|
||||
Proof.
|
||||
induct 1; simplify.
|
||||
|
||||
cases (x0 ==v x).
|
||||
|
||||
simplify.
|
||||
invert H.
|
||||
eapply weakening.
|
||||
eassumption.
|
||||
simplify.
|
||||
equality.
|
||||
|
||||
simplify.
|
||||
constructor.
|
||||
assumption.
|
||||
|
||||
constructor.
|
||||
|
||||
constructor.
|
||||
apply IHhasty1.
|
||||
assumption.
|
||||
apply IHhasty2.
|
||||
assumption.
|
||||
|
||||
cases (x0 ==v x).
|
||||
|
||||
constructor.
|
||||
eapply weakening.
|
||||
eassumption.
|
||||
simplify.
|
||||
cases (x0 ==v x1).
|
||||
|
||||
simplify.
|
||||
assumption.
|
||||
|
||||
simplify.
|
||||
assumption.
|
||||
|
||||
constructor.
|
||||
eapply IHhasty.
|
||||
maps_equal.
|
||||
assumption.
|
||||
|
||||
econstructor.
|
||||
apply IHhasty1.
|
||||
assumption.
|
||||
apply IHhasty2.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
(* We're almost ready for the main preservation property. Let's prove it first
|
||||
* for the more basic [step0] relation. *)
|
||||
Lemma preservation0 : forall e1 e2,
|
||||
step0 e1 e2
|
||||
-> forall t, hasty $0 e1 t
|
||||
-> hasty $0 e2 t.
|
||||
Proof.
|
||||
invert 1; simplify.
|
||||
|
||||
invert H.
|
||||
invert H4.
|
||||
eapply substitution.
|
||||
eassumption.
|
||||
assumption.
|
||||
|
||||
invert H.
|
||||
constructor.
|
||||
Qed.
|
||||
|
||||
(* We also need this key property, essentially saying that, if [e1] and [e2] are
|
||||
* "type-equivalent," then they remain "type-equivalent" after wrapping the same
|
||||
* context around both. *)
|
||||
Lemma generalize_plug : forall e1 C e1',
|
||||
plug C e1 e1'
|
||||
-> forall e2 e2', plug C e2 e2'
|
||||
-> (forall t, hasty $0 e1 t -> hasty $0 e2 t)
|
||||
-> (forall t, hasty $0 e1' t -> hasty $0 e2' t).
|
||||
Proof.
|
||||
induct 1; simplify.
|
||||
|
||||
invert H.
|
||||
apply H0.
|
||||
assumption.
|
||||
|
||||
invert H0.
|
||||
invert H2.
|
||||
constructor.
|
||||
eapply IHplug.
|
||||
eassumption.
|
||||
assumption.
|
||||
assumption.
|
||||
assumption.
|
||||
|
||||
invert H1.
|
||||
invert H3.
|
||||
constructor.
|
||||
assumption.
|
||||
eapply IHplug.
|
||||
eassumption.
|
||||
assumption.
|
||||
assumption.
|
||||
|
||||
invert H0.
|
||||
invert H2.
|
||||
econstructor.
|
||||
eapply IHplug.
|
||||
eassumption.
|
||||
assumption.
|
||||
eassumption.
|
||||
assumption.
|
||||
|
||||
invert H1.
|
||||
invert H3.
|
||||
econstructor.
|
||||
eassumption.
|
||||
eapply IHplug.
|
||||
eassumption.
|
||||
assumption.
|
||||
eassumption.
|
||||
Qed.
|
||||
|
||||
(* OK, now we're almost done. *)
|
||||
Lemma preservation : forall e1 e2,
|
||||
step e1 e2
|
||||
-> forall t, hasty $0 e1 t
|
||||
-> hasty $0 e2 t.
|
||||
Proof.
|
||||
invert 1; simplify.
|
||||
|
||||
eapply generalize_plug with (e1' := e1).
|
||||
eassumption.
|
||||
eassumption.
|
||||
simplify.
|
||||
eapply preservation0.
|
||||
eassumption.
|
||||
assumption.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
(* Now watch this! Though the syntactic approach to type soundness is usually
|
||||
* presented from scratch as a proof technique, it turns out that the two key
|
||||
* properties, progress and preservation, are just instances of the same methods
|
||||
* we've been applying all along with invariants of transition systems! *)
|
||||
Theorem safety : forall e t, hasty $0 e t
|
||||
-> invariantFor (trsys_of e)
|
||||
(fun e' => value e'
|
||||
\/ exists e'', step e' e'').
|
||||
Proof.
|
||||
simplify.
|
||||
|
||||
(* Step 1: strengthen the invariant. In particular, the typing relation is
|
||||
* exactly the right stronger invariant! Our progress theorem proves the
|
||||
* required invariant inclusion. *)
|
||||
apply invariant_weaken with (invariant1 := fun e' => hasty $0 e' t).
|
||||
|
||||
(* Step 2: apply invariant induction, whose induction step turns out to match
|
||||
* our preservation theorem exactly! *)
|
||||
apply invariant_induction; simplify.
|
||||
equality.
|
||||
|
||||
eapply preservation.
|
||||
eassumption.
|
||||
assumption.
|
||||
|
||||
simplify.
|
||||
eapply progress.
|
||||
eassumption.
|
||||
Qed.
|
||||
|
||||
|
||||
(** * Let's do that again with more automation. *)
|
||||
|
||||
Ltac t0 := match goal with
|
||||
| [ H : ex _ |- _ ] => destruct H
|
||||
|
@ -124,9 +437,7 @@ Ltac t0 := match goal with
|
|||
|
||||
Ltac t := simplify; propositional; repeat (t0; simplify); try congruence; eauto 6.
|
||||
|
||||
(* Now we're ready for the first of the two key properties, to show that "has
|
||||
* type t in the empty typing context" is an invariant. *)
|
||||
Lemma progress : forall e t,
|
||||
Lemma progress_snazzy : forall e t,
|
||||
hasty $0 e t
|
||||
-> value e
|
||||
\/ (exists e' : exp, step e e').
|
||||
|
@ -134,21 +445,9 @@ Proof.
|
|||
induct 1; t.
|
||||
Qed.
|
||||
|
||||
(* Inclusion between typing contexts is preserved by adding the same new mapping
|
||||
* to both. *)
|
||||
Lemma weakening_override : forall (G G' : fmap var type) x t,
|
||||
(forall x' t', G $? x' = Some t' -> G' $? x' = Some t')
|
||||
-> (forall x' t', G $+ (x, t) $? x' = Some t'
|
||||
-> G' $+ (x, t) $? x' = Some t').
|
||||
Proof.
|
||||
simplify.
|
||||
cases (x ==v x'); simplify; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve weakening_override.
|
||||
|
||||
(** Raising a typing derivation to a larger typing context *)
|
||||
Lemma weakening : forall G e t,
|
||||
Lemma weakening_snazzy : forall G e t,
|
||||
hasty G e t
|
||||
-> forall G', (forall x t, G $? x = Some t -> G' $? x = Some t)
|
||||
-> hasty G' e t.
|
||||
|
@ -156,7 +455,7 @@ Proof.
|
|||
induct 1; t.
|
||||
Qed.
|
||||
|
||||
Hint Resolve weakening.
|
||||
Hint Resolve weakening_snazzy.
|
||||
|
||||
(* Replacing a typing context with an equal one has no effect (useful to guide
|
||||
* proof search). *)
|
||||
|
@ -170,8 +469,7 @@ Qed.
|
|||
|
||||
Hint Resolve hasty_change.
|
||||
|
||||
(* Replacing a variable with a properly typed term preserves typing. *)
|
||||
Lemma substitution : forall G x t' e t e',
|
||||
Lemma substitution_snazzy : forall G x t' e t e',
|
||||
hasty (G $+ (x, t')) e t
|
||||
-> hasty $0 e' t'
|
||||
-> hasty G (subst e' x e) t.
|
||||
|
@ -179,11 +477,9 @@ Proof.
|
|||
induct 1; t.
|
||||
Qed.
|
||||
|
||||
Hint Resolve substitution.
|
||||
Hint Resolve substitution_snazzy.
|
||||
|
||||
(* We're almost ready for the main preservation property. Let's prove it first
|
||||
* for the more basic [step0] relation. *)
|
||||
Lemma preservation0 : forall e1 e2,
|
||||
Lemma preservation0_snazzy : forall e1 e2,
|
||||
step0 e1 e2
|
||||
-> forall t, hasty $0 e1 t
|
||||
-> hasty $0 e2 t.
|
||||
|
@ -191,12 +487,9 @@ Proof.
|
|||
invert 1; t.
|
||||
Qed.
|
||||
|
||||
Hint Resolve preservation0.
|
||||
Hint Resolve preservation0_snazzy.
|
||||
|
||||
(* We also need this key property, essentially saying that, if [e1] and [e2] are
|
||||
* "type-equivalent," then they remain "type-equivalent" after wrapping the same
|
||||
* context around both. *)
|
||||
Lemma generalize_plug : forall e1 C e1',
|
||||
Lemma generalize_plug_snazzy : forall e1 C e1',
|
||||
plug C e1 e1'
|
||||
-> forall e2 e2', plug C e2 e2'
|
||||
-> (forall t, hasty $0 e1 t -> hasty $0 e2 t)
|
||||
|
@ -205,10 +498,9 @@ Proof.
|
|||
induct 1; t.
|
||||
Qed.
|
||||
|
||||
Hint Resolve generalize_plug.
|
||||
Hint Resolve generalize_plug_snazzy.
|
||||
|
||||
(* OK, now we're out of the woods. *)
|
||||
Lemma preservation : forall e1 e2,
|
||||
Lemma preservation_snazzy : forall e1 e2,
|
||||
step e1 e2
|
||||
-> forall t, hasty $0 e1 t
|
||||
-> hasty $0 e2 t.
|
||||
|
@ -216,27 +508,14 @@ Proof.
|
|||
invert 1; t.
|
||||
Qed.
|
||||
|
||||
Hint Resolve progress preservation.
|
||||
Hint Resolve progress_snazzy preservation_snazzy.
|
||||
|
||||
(* Now watch this! Though the syntactic approach to type soundness is usually
|
||||
* presented from scratch as a proof technique, it turns out that the two key
|
||||
* properties, progress and preservation, are just instances of the same methods
|
||||
* we've been applying all along with invariants of transition systems! *)
|
||||
Theorem safety : forall e t, hasty $0 e t
|
||||
Theorem safety_snazzy : forall e t, hasty $0 e t
|
||||
-> invariantFor (trsys_of e)
|
||||
(fun e' => value e'
|
||||
\/ exists e'', step e' e'').
|
||||
Proof.
|
||||
simplify.
|
||||
|
||||
(* Step 1: strengthen the invariant. In particular, the typing relation is
|
||||
* exactly the right stronger invariant! Our progress theorem proves the
|
||||
* required invariant inclusion. *)
|
||||
apply invariant_weaken with (invariant1 := fun e' => hasty $0 e' t); eauto.
|
||||
|
||||
(* Step 2: apply invariant induction, whose induction step turns out to match
|
||||
* our preservation theorem exactly! *)
|
||||
apply invariant_induction; simplify.
|
||||
equality.
|
||||
eauto. (* We use preservation here. *)
|
||||
apply invariant_induction; simplify; eauto; equality.
|
||||
Qed.
|
||||
|
|
Loading…
Reference in a new issue