mirror of
https://github.com/achlipala/frap.git
synced 2025-01-05 23:54:14 +00:00
SeparationLogic: object language
This commit is contained in:
parent
1de08dee66
commit
9dc96733d4
1 changed files with 93 additions and 0 deletions
93
SeparationLogic.v
Normal file
93
SeparationLogic.v
Normal file
|
@ -0,0 +1,93 @@
|
|||
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
|
||||
* Chapter 12: Separation Logic
|
||||
* Author: Adam Chlipala
|
||||
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
|
||||
|
||||
Require Import Frap.
|
||||
|
||||
Set Implicit Arguments.
|
||||
Set Asymmetric Patterns.
|
||||
|
||||
(** * Shared notations and definitions; main material starts afterward. *)
|
||||
|
||||
Notation "m $! k" := (match m $? k with Some n => n | None => O end) (at level 30).
|
||||
Definition heap := fmap nat nat.
|
||||
Definition assertion := heap -> Prop.
|
||||
|
||||
Hint Extern 1 (_ <= _) => linear_arithmetic.
|
||||
Hint Extern 1 (@eq nat _ _) => linear_arithmetic.
|
||||
|
||||
Ltac simp := repeat (simplify; subst; propositional;
|
||||
try match goal with
|
||||
| [ H : ex _ |- _ ] => invert H
|
||||
end); try linear_arithmetic.
|
||||
|
||||
|
||||
(** * Encore of last mixed-embedding language from last time *)
|
||||
|
||||
Inductive loop_outcome acc :=
|
||||
| Done (a : acc)
|
||||
| Again (a : acc).
|
||||
|
||||
Inductive cmd : Set -> Type :=
|
||||
| Return {result : Set} (r : result) : cmd result
|
||||
| Bind {result result'} (c1 : cmd result') (c2 : result' -> cmd result) : cmd result
|
||||
| Read (a : nat) : cmd nat
|
||||
| Write (a v : nat) : cmd unit
|
||||
| Loop {acc : Set} (init : acc) (body : acc -> cmd (loop_outcome acc)) : cmd acc
|
||||
| Fail {result} : cmd result
|
||||
|
||||
(* But let's also add memory allocation and deallocation. *)
|
||||
| Alloc (numWords : nat) : cmd nat
|
||||
| Free (base numWords : nat) : cmd unit.
|
||||
|
||||
Notation "x <- c1 ; c2" := (Bind c1 (fun x => c2)) (right associativity, at level 80).
|
||||
Notation "'for' x := i 'loop' c1 'done'" := (Loop i (fun x => c1)) (right associativity, at level 80).
|
||||
|
||||
(* These helper functions respectively initialize a new span of memory and
|
||||
* remove a span of memory that the program is done with. *)
|
||||
|
||||
Fixpoint initialize (h : heap) (base numWords : nat) : heap :=
|
||||
match numWords with
|
||||
| O => h
|
||||
| S numWords' => initialize h base numWords' $+ (base + numWords', 0)
|
||||
end.
|
||||
|
||||
Fixpoint deallocate (h : heap) (base numWords : nat) : heap :=
|
||||
match numWords with
|
||||
| O => h
|
||||
| S numWords' => deallocate h base numWords' $- (base + numWords')
|
||||
end.
|
||||
|
||||
(* Let's do the semantics a bit differently this time, falling back on classic
|
||||
* small-step operational semantics. *)
|
||||
Inductive step : forall A, heap * cmd A -> heap * cmd A -> Prop :=
|
||||
| StepBindRecur : forall result result' (c1 c1' : cmd result') (c2 : result' -> cmd result) h h',
|
||||
step (h, c1) (h', c1')
|
||||
-> step (h, Bind c1 c2) (h', Bind c1' c2)
|
||||
| StepBindProceed : forall (result result' : Set) (v : result') (c2 : result' -> cmd result) h,
|
||||
step (h, Bind (Return v) c2) (h, c2 v)
|
||||
|
||||
| StepLoop : forall (acc : Set) (init : acc) (body : acc -> cmd (loop_outcome acc)) h,
|
||||
step (h, Loop init body) (h, o <- body init; match o with
|
||||
| Done a => Return a
|
||||
| Again a => Loop a body
|
||||
end)
|
||||
|
||||
| StepRead : forall h a v,
|
||||
h $? a = Some v
|
||||
-> step (h, Read a) (h, Return v)
|
||||
| StepWrite : forall h a v v',
|
||||
h $? a = Some v
|
||||
-> step (h, Write a v') (h $+ (a, v'), Return tt)
|
||||
| StepAlloc : forall h numWords a,
|
||||
(forall i, i < numWords -> h $? (a + i) = None)
|
||||
-> step (h, Alloc numWords) (initialize h a numWords, Return a)
|
||||
| StepFree : forall h a numWords,
|
||||
step (h, Free a numWords) (deallocate h a numWords, Return tt).
|
||||
|
||||
|
||||
Definition trsys_of (h : heap) {result} (c : cmd result) := {|
|
||||
Initial := {(h, c)};
|
||||
Step := step (A := result)
|
||||
|}.
|
Loading…
Reference in a new issue