mirror of
https://github.com/achlipala/frap.git
synced 2024-11-30 16:16:19 +00:00
LambdaCalculusAndTypeSoundness: Church numerals
This commit is contained in:
parent
55257f669d
commit
a36ebc7802
1 changed files with 226 additions and 11 deletions
|
@ -14,7 +14,7 @@ Module Ulc.
|
|||
Fixpoint subst (rep : exp) (x : string) (e : exp) : exp :=
|
||||
match e with
|
||||
| Var y => if string_dec y x then rep else Var y
|
||||
| Abs y e1 => Abs y (if string_dec y x then e1 else subst rep x e1)
|
||||
| Abs y e1 => Abs y (if y ==v x then e1 else subst rep x e1)
|
||||
| App e1 e2 => App (subst rep x e1) (subst rep x e2)
|
||||
end.
|
||||
|
||||
|
@ -34,7 +34,6 @@ Module Ulc.
|
|||
|
||||
(** Note that we omit a [Var] case, since variable terms can't be *closed*. *)
|
||||
|
||||
|
||||
(** Which terms are values, that is, final results of execution? *)
|
||||
Inductive value : exp -> Prop :=
|
||||
| Value : forall x e, value (Abs x e).
|
||||
|
@ -42,6 +41,15 @@ Module Ulc.
|
|||
|
||||
Hint Constructors eval value.
|
||||
|
||||
Theorem value_eval : forall v,
|
||||
value v
|
||||
-> eval v v.
|
||||
Proof.
|
||||
invert 1; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve value_eval.
|
||||
|
||||
(** Actually, let's prove that [eval] only produces values. *)
|
||||
Theorem eval_value : forall e v,
|
||||
eval e v
|
||||
|
@ -50,6 +58,192 @@ Module Ulc.
|
|||
induct 1; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve eval_value.
|
||||
|
||||
Coercion Var : var >-> exp.
|
||||
Notation "\ x , e" := (Abs x e) (at level 50).
|
||||
Infix "@" := App (at level 49, left associativity).
|
||||
|
||||
Definition zero := \"f", \"x", "x".
|
||||
Definition plus1 := \"n", \"f", \"x", "f" @ ("n" @ "f" @ "x").
|
||||
|
||||
Fixpoint canonical' (n : nat) : exp :=
|
||||
match n with
|
||||
| O => "x"
|
||||
| S n' => "f" @ ((\"f", \"x", canonical' n') @ "f" @ "x")
|
||||
end.
|
||||
|
||||
Definition canonical n := \"f", \"x", canonical' n.
|
||||
|
||||
Definition represents (e : exp) (n : nat) :=
|
||||
eval e (canonical n).
|
||||
|
||||
Theorem zero_ok : represents zero 0.
|
||||
Proof.
|
||||
unfold zero, represents, canonical.
|
||||
simplify.
|
||||
econstructor.
|
||||
Qed.
|
||||
|
||||
Theorem plus1_ok : forall e n, represents e n
|
||||
-> represents (plus1 @ e) (S n).
|
||||
Proof.
|
||||
unfold plus1, represents, canonical; simplify.
|
||||
econstructor.
|
||||
econstructor.
|
||||
eassumption.
|
||||
simplify.
|
||||
econstructor.
|
||||
Qed.
|
||||
|
||||
Definition add := \"n", \"m", "n" @ plus1 @ "m".
|
||||
|
||||
Example add_1_2 : exists v,
|
||||
eval (add @ (plus1 @ zero) @ (plus1 @ (plus1 @ zero))) v
|
||||
/\ eval (plus1 @ (plus1 @ (plus1 @ zero))) v.
|
||||
Proof.
|
||||
eexists; propositional.
|
||||
repeat (econstructor; simplify).
|
||||
repeat econstructor.
|
||||
Qed.
|
||||
|
||||
Lemma subst_m_canonical' : forall m n,
|
||||
subst m "m" (canonical' n) = canonical' n.
|
||||
Proof.
|
||||
induct n; simplify; equality.
|
||||
Qed.
|
||||
|
||||
Lemma add_ok' : forall m n,
|
||||
eval
|
||||
(subst (\ "f", (\ "x", canonical' m)) "x"
|
||||
(subst (\ "n", (\ "f", (\ "x", "f" @ (("n" @ "f") @ "x")))) "f"
|
||||
(canonical' n))) (canonical (n + m)).
|
||||
Proof.
|
||||
induct n; simplify.
|
||||
|
||||
econstructor.
|
||||
|
||||
econstructor.
|
||||
econstructor.
|
||||
econstructor.
|
||||
econstructor.
|
||||
econstructor.
|
||||
econstructor.
|
||||
simplify.
|
||||
econstructor.
|
||||
econstructor.
|
||||
simplify.
|
||||
eassumption.
|
||||
|
||||
simplify.
|
||||
econstructor.
|
||||
Qed.
|
||||
|
||||
Theorem add_ok : forall n ne m me,
|
||||
represents ne n
|
||||
-> represents me m
|
||||
-> represents (add @ ne @ me) (n + m).
|
||||
Proof.
|
||||
unfold represents; simplify.
|
||||
|
||||
econstructor.
|
||||
econstructor.
|
||||
econstructor.
|
||||
eassumption.
|
||||
simplify.
|
||||
econstructor.
|
||||
eassumption.
|
||||
simplify.
|
||||
econstructor.
|
||||
econstructor.
|
||||
econstructor.
|
||||
econstructor.
|
||||
simplify.
|
||||
econstructor.
|
||||
econstructor.
|
||||
rewrite subst_m_canonical'.
|
||||
apply add_ok'.
|
||||
Qed.
|
||||
|
||||
Definition mult := \"n", \"m", "n" @ (add @ "m") @ zero.
|
||||
|
||||
Example mult_1_2 : exists v,
|
||||
eval (mult @ (plus1 @ zero) @ (plus1 @ (plus1 @ zero))) v
|
||||
/\ eval (plus1 @ (plus1 @ zero)) v.
|
||||
Proof.
|
||||
eexists; propositional.
|
||||
repeat (econstructor; simplify).
|
||||
repeat econstructor.
|
||||
Qed.
|
||||
|
||||
Lemma mult_ok' : forall m n,
|
||||
eval
|
||||
(subst (\ "f", (\ "x", "x")) "x"
|
||||
(subst
|
||||
(\ "m",
|
||||
((\ "f", (\ "x", canonical' m)) @
|
||||
(\ "n", (\ "f", (\ "x", "f" @ (("n" @ "f") @ "x"))))) @ "m")
|
||||
"f" (canonical' n))) (canonical (n * m)).
|
||||
Proof.
|
||||
induct n; simplify.
|
||||
|
||||
econstructor.
|
||||
|
||||
econstructor.
|
||||
econstructor.
|
||||
econstructor.
|
||||
econstructor.
|
||||
econstructor.
|
||||
econstructor.
|
||||
simplify.
|
||||
econstructor.
|
||||
econstructor.
|
||||
simplify.
|
||||
eassumption.
|
||||
|
||||
simplify.
|
||||
econstructor.
|
||||
econstructor.
|
||||
econstructor.
|
||||
econstructor.
|
||||
simplify.
|
||||
econstructor.
|
||||
econstructor.
|
||||
rewrite subst_m_canonical'.
|
||||
apply add_ok'.
|
||||
Qed.
|
||||
|
||||
Theorem mult_ok : forall n ne m me,
|
||||
represents ne n
|
||||
-> represents me m
|
||||
-> represents (mult @ ne @ me) (n * m).
|
||||
Proof.
|
||||
unfold represents; simplify.
|
||||
|
||||
econstructor.
|
||||
econstructor.
|
||||
econstructor.
|
||||
eassumption.
|
||||
simplify.
|
||||
econstructor.
|
||||
eassumption.
|
||||
simplify.
|
||||
econstructor.
|
||||
econstructor.
|
||||
econstructor.
|
||||
econstructor.
|
||||
econstructor.
|
||||
econstructor.
|
||||
simplify.
|
||||
econstructor.
|
||||
simplify.
|
||||
econstructor.
|
||||
econstructor.
|
||||
simplify.
|
||||
rewrite subst_m_canonical'.
|
||||
apply mult_ok'.
|
||||
Qed.
|
||||
|
||||
|
||||
(** * Small-step semantics with evaluation contexts *)
|
||||
|
||||
|
@ -86,15 +280,6 @@ Module Ulc.
|
|||
|
||||
(** We can move directly to establishing inclusion from basic small steps to contextual small steps. *)
|
||||
|
||||
Theorem value_eval : forall v,
|
||||
value v
|
||||
-> eval v v.
|
||||
Proof.
|
||||
invert 1; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve value_eval.
|
||||
|
||||
Lemma step_eval'' : forall v c x e e1 e2 v0,
|
||||
value v
|
||||
-> plug c (App (Abs x e) v) e1
|
||||
|
@ -314,6 +499,36 @@ Module Stlc.
|
|||
|
||||
Hint Constructors value plug step0 step hasty.
|
||||
|
||||
Infix "-->" := Fun (at level 60, right associativity).
|
||||
Coercion Const : nat >-> exp.
|
||||
Infix "^+^" := Plus (at level 50).
|
||||
Coercion Var : var >-> exp.
|
||||
Notation "\ x , e" := (Abs x e) (at level 51).
|
||||
Infix "@" := App (at level 49, left associativity).
|
||||
|
||||
Example one_plus_one : hasty $0 (1 ^+^ 1) Nat.
|
||||
Proof.
|
||||
repeat (econstructor; simplify).
|
||||
Qed.
|
||||
|
||||
Example add : hasty $0 (\"n", \"m", "n" ^+^ "m") (Nat --> Nat --> Nat).
|
||||
Proof.
|
||||
repeat (econstructor; simplify).
|
||||
Qed.
|
||||
|
||||
Example eleven : hasty $0 ((\"n", \"m", "n" ^+^ "m") @ 7 @ 4) Nat.
|
||||
Proof.
|
||||
repeat (econstructor; simplify).
|
||||
Qed.
|
||||
|
||||
Example seven_the_long_way : hasty $0 ((\"x", "x") @ (\"x", "x") @ 7) Nat.
|
||||
Proof.
|
||||
repeat (econstructor; simplify).
|
||||
Qed.
|
||||
|
||||
|
||||
(** * Some examples of typed programs *)
|
||||
|
||||
|
||||
(** * Let's prove type soundness first without much automation. *)
|
||||
|
||||
|
|
Loading…
Reference in a new issue