mirror of
https://github.com/achlipala/frap.git
synced 2025-01-24 15:26:10 +00:00
RuleInduction: some propositional logic, with slightly naughty use of excluded middle
This commit is contained in:
parent
7a906b1a63
commit
a55a98b426
1 changed files with 663 additions and 0 deletions
663
RuleInduction.v
663
RuleInduction.v
|
@ -220,3 +220,666 @@ Proof.
|
|||
apply Permutation_app2.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
|
||||
(** * Simple propositional logic *)
|
||||
|
||||
Module SimplePropositional.
|
||||
Inductive prop :=
|
||||
| Truth
|
||||
| Falsehood
|
||||
| Var (x : var)
|
||||
| And (p1 p2 : prop)
|
||||
| Or (p1 p2 : prop).
|
||||
|
||||
Inductive valid (vars : var -> Prop) : prop -> Prop :=
|
||||
| ValidTruth :
|
||||
valid vars Truth
|
||||
| ValidVar : forall x,
|
||||
vars x
|
||||
-> valid vars (Var x)
|
||||
| ValidAnd : forall p1 p2,
|
||||
valid vars p1
|
||||
-> valid vars p2
|
||||
-> valid vars (And p1 p2)
|
||||
| ValidOr1 : forall p1 p2,
|
||||
valid vars p1
|
||||
-> valid vars (Or p1 p2)
|
||||
| ValidOr2 : forall p1 p2,
|
||||
valid vars p2
|
||||
-> valid vars (Or p1 p2).
|
||||
|
||||
Fixpoint interp (vars : var -> Prop) (p : prop) : Prop :=
|
||||
match p with
|
||||
| Truth => True
|
||||
| Falsehood => False
|
||||
| Var x => vars x
|
||||
| And p1 p2 => interp vars p1 /\ interp vars p2
|
||||
| Or p1 p2 => interp vars p1 \/ interp vars p2
|
||||
end.
|
||||
|
||||
Theorem interp_valid : forall vars p, interp vars p -> valid vars p.
|
||||
Proof.
|
||||
induct p; simplify.
|
||||
|
||||
apply ValidTruth.
|
||||
|
||||
propositional.
|
||||
|
||||
apply ValidVar.
|
||||
assumption.
|
||||
|
||||
propositional.
|
||||
apply ValidAnd.
|
||||
assumption.
|
||||
assumption.
|
||||
|
||||
propositional.
|
||||
apply ValidOr1.
|
||||
assumption.
|
||||
apply ValidOr2.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Theorem valid_interp : forall vars p, valid vars p -> interp vars p.
|
||||
Proof.
|
||||
induct 1; simplify.
|
||||
|
||||
propositional.
|
||||
|
||||
assumption.
|
||||
|
||||
propositional.
|
||||
|
||||
propositional.
|
||||
|
||||
propositional.
|
||||
Qed.
|
||||
|
||||
Fixpoint commuter (p : prop) : prop :=
|
||||
match p with
|
||||
| Truth => Truth
|
||||
| Falsehood => Falsehood
|
||||
| Var x => Var x
|
||||
| And p1 p2 => And (commuter p2) (commuter p1)
|
||||
| Or p1 p2 => Or (commuter p2) (commuter p1)
|
||||
end.
|
||||
|
||||
Theorem valid_commuter_fwd : forall vars p, valid vars p -> valid vars (commuter p).
|
||||
Proof.
|
||||
induct 1; simplify.
|
||||
|
||||
apply ValidTruth.
|
||||
|
||||
apply ValidVar.
|
||||
assumption.
|
||||
|
||||
apply ValidAnd.
|
||||
assumption.
|
||||
assumption.
|
||||
|
||||
apply ValidOr2.
|
||||
assumption.
|
||||
|
||||
apply ValidOr1.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Theorem valid_commuter_bwd : forall vars p, valid vars (commuter p) -> valid vars p.
|
||||
Proof.
|
||||
induct p; invert 1; simplify.
|
||||
|
||||
apply ValidTruth.
|
||||
|
||||
apply ValidVar.
|
||||
assumption.
|
||||
|
||||
apply ValidAnd.
|
||||
apply IHp1.
|
||||
assumption.
|
||||
apply IHp2.
|
||||
assumption.
|
||||
|
||||
apply ValidOr2.
|
||||
apply IHp2.
|
||||
assumption.
|
||||
|
||||
apply ValidOr1.
|
||||
apply IHp1.
|
||||
assumption.
|
||||
Qed.
|
||||
End SimplePropositional.
|
||||
|
||||
|
||||
(** * Propositional logic with implication *)
|
||||
|
||||
Module PropositionalWithImplication.
|
||||
Inductive prop :=
|
||||
| Truth
|
||||
| Falsehood
|
||||
| Var (x : var)
|
||||
| And (p1 p2 : prop)
|
||||
| Or (p1 p2 : prop)
|
||||
| Imply (p1 p2 : prop).
|
||||
|
||||
Definition Not (p : prop) := Imply p Falsehood.
|
||||
|
||||
Inductive valid (hyps : prop -> Prop) : prop -> Prop :=
|
||||
| ValidHyp : forall h,
|
||||
hyps h
|
||||
-> valid hyps h
|
||||
| ValidTruthIntro :
|
||||
valid hyps Truth
|
||||
| ValidFalsehoodElim : forall p,
|
||||
valid hyps Falsehood
|
||||
-> valid hyps p
|
||||
| ValidAndIntro : forall p1 p2,
|
||||
valid hyps p1
|
||||
-> valid hyps p2
|
||||
-> valid hyps (And p1 p2)
|
||||
| ValidAndElim1 : forall p1 p2,
|
||||
valid hyps (And p1 p2)
|
||||
-> valid hyps p1
|
||||
| ValidAndElim2 : forall p1 p2,
|
||||
valid hyps (And p1 p2)
|
||||
-> valid hyps p2
|
||||
| ValidOrIntro1 : forall p1 p2,
|
||||
valid hyps p1
|
||||
-> valid hyps (Or p1 p2)
|
||||
| ValidOrIntro2 : forall p1 p2,
|
||||
valid hyps p2
|
||||
-> valid hyps (Or p1 p2)
|
||||
| ValidOrElim : forall p1 p2 p,
|
||||
valid hyps (Or p1 p2)
|
||||
-> valid (fun h => h = p1 \/ hyps h) p
|
||||
-> valid (fun h => h = p2 \/ hyps h) p
|
||||
-> valid hyps p
|
||||
| ValidImplyIntro : forall p1 p2,
|
||||
valid (fun h => h = p1 \/ hyps h) p2
|
||||
-> valid hyps (Imply p1 p2)
|
||||
| ValidImplyElim : forall p1 p2,
|
||||
valid hyps (Imply p1 p2)
|
||||
-> valid hyps p1
|
||||
-> valid hyps p2
|
||||
| ValidExcludedMiddle : forall p,
|
||||
valid hyps (Or p (Not p)).
|
||||
|
||||
Fixpoint interp (vars : var -> Prop) (p : prop) : Prop :=
|
||||
match p with
|
||||
| Truth => True
|
||||
| Falsehood => False
|
||||
| Var x => vars x
|
||||
| And p1 p2 => interp vars p1 /\ interp vars p2
|
||||
| Or p1 p2 => interp vars p1 \/ interp vars p2
|
||||
| Imply p1 p2 => interp vars p1 -> interp vars p2
|
||||
end.
|
||||
|
||||
Theorem valid_interp : forall vars hyps p,
|
||||
valid hyps p
|
||||
-> (forall h, hyps h -> interp vars h)
|
||||
-> interp vars p.
|
||||
Proof.
|
||||
induct 1; simplify.
|
||||
|
||||
apply H0.
|
||||
assumption.
|
||||
|
||||
propositional.
|
||||
|
||||
propositional.
|
||||
|
||||
propositional.
|
||||
|
||||
propositional.
|
||||
|
||||
propositional.
|
||||
|
||||
propositional.
|
||||
|
||||
propositional.
|
||||
|
||||
propositional.
|
||||
apply IHvalid2.
|
||||
propositional.
|
||||
equality.
|
||||
apply H2.
|
||||
assumption.
|
||||
apply IHvalid3.
|
||||
propositional.
|
||||
equality.
|
||||
apply H2.
|
||||
assumption.
|
||||
|
||||
apply IHvalid.
|
||||
propositional.
|
||||
equality.
|
||||
apply H0.
|
||||
assumption.
|
||||
|
||||
propositional.
|
||||
|
||||
excluded_middle (interp vars p); propositional.
|
||||
(* Note that use of excluded middle is a bit controversial in Coq,
|
||||
* and we'll generally be trying to avoid it,
|
||||
* but it helps enough with this example that we don't sweat the details. *)
|
||||
Qed.
|
||||
|
||||
Lemma valid_weaken : forall hyps1 p,
|
||||
valid hyps1 p
|
||||
-> forall hyps2 : prop -> Prop,
|
||||
(forall h, hyps1 h -> hyps2 h)
|
||||
-> valid hyps2 p.
|
||||
Proof.
|
||||
induct 1; simplify.
|
||||
|
||||
apply ValidHyp.
|
||||
apply H0.
|
||||
assumption.
|
||||
|
||||
apply ValidTruthIntro.
|
||||
|
||||
apply ValidFalsehoodElim.
|
||||
apply IHvalid.
|
||||
assumption.
|
||||
|
||||
apply ValidAndIntro.
|
||||
apply IHvalid1.
|
||||
assumption.
|
||||
apply IHvalid2.
|
||||
assumption.
|
||||
|
||||
apply ValidAndElim1 with p2.
|
||||
apply IHvalid.
|
||||
assumption.
|
||||
|
||||
apply ValidAndElim2 with p1.
|
||||
apply IHvalid.
|
||||
assumption.
|
||||
|
||||
apply ValidOrIntro1.
|
||||
apply IHvalid.
|
||||
assumption.
|
||||
|
||||
apply ValidOrIntro2.
|
||||
apply IHvalid.
|
||||
assumption.
|
||||
|
||||
apply ValidOrElim with p1 p2.
|
||||
apply IHvalid1.
|
||||
assumption.
|
||||
apply IHvalid2.
|
||||
first_order.
|
||||
apply IHvalid3.
|
||||
first_order.
|
||||
|
||||
apply ValidImplyIntro.
|
||||
apply IHvalid.
|
||||
propositional.
|
||||
right.
|
||||
apply H0.
|
||||
assumption.
|
||||
|
||||
apply ValidImplyElim with p1.
|
||||
apply IHvalid1.
|
||||
assumption.
|
||||
apply IHvalid2.
|
||||
assumption.
|
||||
|
||||
apply ValidExcludedMiddle.
|
||||
Qed.
|
||||
|
||||
Lemma valid_cut : forall hyps1 p p',
|
||||
valid hyps1 p
|
||||
-> forall hyps2, valid hyps2 p'
|
||||
-> (forall h, hyps1 h -> hyps2 h \/ h = p')
|
||||
-> valid hyps2 p.
|
||||
Proof.
|
||||
induct 1; simplify.
|
||||
|
||||
apply H1 in H.
|
||||
propositional.
|
||||
apply ValidHyp.
|
||||
assumption.
|
||||
equality.
|
||||
|
||||
apply ValidTruthIntro.
|
||||
|
||||
apply ValidFalsehoodElim.
|
||||
apply IHvalid; assumption.
|
||||
|
||||
apply ValidAndIntro.
|
||||
apply IHvalid1; assumption.
|
||||
apply IHvalid2; assumption.
|
||||
|
||||
apply ValidAndElim1 with p2.
|
||||
apply IHvalid; assumption.
|
||||
|
||||
apply ValidAndElim2 with p1.
|
||||
apply IHvalid; assumption.
|
||||
|
||||
apply ValidOrIntro1.
|
||||
apply IHvalid; assumption.
|
||||
|
||||
apply ValidOrIntro2.
|
||||
apply IHvalid; assumption.
|
||||
|
||||
apply ValidOrElim with p1 p2.
|
||||
apply IHvalid1; assumption.
|
||||
apply IHvalid2.
|
||||
apply valid_weaken with hyps2.
|
||||
assumption.
|
||||
propositional.
|
||||
first_order.
|
||||
apply IHvalid3.
|
||||
apply valid_weaken with hyps2.
|
||||
assumption.
|
||||
propositional.
|
||||
first_order.
|
||||
|
||||
apply ValidImplyIntro.
|
||||
apply IHvalid.
|
||||
apply valid_weaken with hyps2.
|
||||
assumption.
|
||||
propositional.
|
||||
first_order.
|
||||
|
||||
apply ValidImplyElim with p1.
|
||||
apply IHvalid1; assumption.
|
||||
apply IHvalid2; assumption.
|
||||
|
||||
apply ValidExcludedMiddle.
|
||||
Qed.
|
||||
|
||||
Fixpoint varsOf (p : prop) : list var :=
|
||||
match p with
|
||||
| Truth
|
||||
| Falsehood => []
|
||||
| Var x => [x]
|
||||
| And p1 p2
|
||||
| Or p1 p2
|
||||
| Imply p1 p2 => varsOf p1 ++ varsOf p2
|
||||
end.
|
||||
|
||||
Lemma interp_valid'' : forall p hyps,
|
||||
(forall x, In x (varsOf p) -> hyps (Var x) \/ hyps (Not (Var x)))
|
||||
-> (forall x, hyps (Var x) -> ~hyps (Not (Var x)))
|
||||
-> IF interp (fun x => hyps (Var x)) p
|
||||
then valid hyps p
|
||||
else valid hyps (Not p).
|
||||
Proof.
|
||||
induct p; unfold IF_then_else; simplify.
|
||||
|
||||
left; propositional.
|
||||
apply ValidTruthIntro.
|
||||
|
||||
right; propositional.
|
||||
apply ValidImplyIntro.
|
||||
apply ValidHyp.
|
||||
propositional.
|
||||
|
||||
specialize (H x); propositional.
|
||||
left; propositional.
|
||||
apply ValidHyp.
|
||||
assumption.
|
||||
right; first_order.
|
||||
apply ValidHyp.
|
||||
assumption.
|
||||
|
||||
excluded_middle (interp (fun x => hyps (Var x)) p1).
|
||||
excluded_middle (interp (fun x => hyps (Var x)) p2).
|
||||
left; propositional.
|
||||
apply ValidAndIntro.
|
||||
assert (IF interp (fun x : var => hyps (Var x)) p1 then valid hyps p1 else valid hyps (Not p1)).
|
||||
apply IHp1; propositional.
|
||||
apply H.
|
||||
apply in_or_app; propositional.
|
||||
unfold IF_then_else in H3; propositional.
|
||||
assert (IF interp (fun x : var => hyps (Var x)) p2 then valid hyps p2 else valid hyps (Not p2)).
|
||||
apply IHp2; propositional.
|
||||
apply H.
|
||||
apply in_or_app; propositional.
|
||||
unfold IF_then_else in H3; propositional.
|
||||
right; propositional.
|
||||
assert (IF interp (fun x : var => hyps (Var x)) p2 then valid hyps p2 else valid hyps (Not p2)).
|
||||
apply IHp2; propositional.
|
||||
apply H.
|
||||
apply in_or_app; propositional.
|
||||
unfold IF_then_else in H3; propositional.
|
||||
apply ValidImplyIntro.
|
||||
apply ValidImplyElim with p2.
|
||||
apply valid_weaken with hyps.
|
||||
assumption.
|
||||
propositional.
|
||||
apply ValidAndElim2 with p1.
|
||||
apply ValidHyp.
|
||||
propositional.
|
||||
right; propositional.
|
||||
assert (IF interp (fun x : var => hyps (Var x)) p1 then valid hyps p1 else valid hyps (Not p1)).
|
||||
apply IHp1; propositional.
|
||||
apply H.
|
||||
apply in_or_app; propositional.
|
||||
unfold IF_then_else in H2; propositional.
|
||||
apply ValidImplyIntro.
|
||||
apply ValidImplyElim with p1.
|
||||
apply valid_weaken with hyps.
|
||||
assumption.
|
||||
propositional.
|
||||
apply ValidAndElim1 with p2.
|
||||
apply ValidHyp.
|
||||
propositional.
|
||||
|
||||
excluded_middle (interp (fun x => hyps (Var x)) p1).
|
||||
left; propositional.
|
||||
apply ValidOrIntro1.
|
||||
assert (IF interp (fun x : var => hyps (Var x)) p1 then valid hyps p1 else valid hyps (Not p1)).
|
||||
apply IHp1; propositional.
|
||||
apply H.
|
||||
apply in_or_app; propositional.
|
||||
unfold IF_then_else in H2; propositional.
|
||||
excluded_middle (interp (fun x => hyps (Var x)) p2).
|
||||
left; propositional.
|
||||
apply ValidOrIntro2.
|
||||
assert (IF interp (fun x : var => hyps (Var x)) p2 then valid hyps p2 else valid hyps (Not p2)).
|
||||
apply IHp2; propositional.
|
||||
apply H.
|
||||
apply in_or_app; propositional.
|
||||
unfold IF_then_else in H3; propositional.
|
||||
right; propositional.
|
||||
apply ValidImplyIntro.
|
||||
apply ValidOrElim with p1 p2.
|
||||
apply ValidHyp.
|
||||
propositional.
|
||||
assert (IF interp (fun x : var => hyps (Var x)) p1 then valid hyps p1 else valid hyps (Not p1)).
|
||||
apply IHp1; propositional.
|
||||
apply H.
|
||||
apply in_or_app; propositional.
|
||||
unfold IF_then_else in H3; propositional.
|
||||
apply ValidImplyElim with p1.
|
||||
apply valid_weaken with hyps.
|
||||
assumption.
|
||||
propositional.
|
||||
apply ValidHyp.
|
||||
propositional.
|
||||
assert (IF interp (fun x : var => hyps (Var x)) p2 then valid hyps p2 else valid hyps (Not p2)).
|
||||
apply IHp2; propositional.
|
||||
apply H.
|
||||
apply in_or_app; propositional.
|
||||
unfold IF_then_else in H3; propositional.
|
||||
apply ValidImplyElim with p2.
|
||||
apply valid_weaken with hyps.
|
||||
assumption.
|
||||
propositional.
|
||||
apply ValidHyp.
|
||||
propositional.
|
||||
|
||||
excluded_middle (interp (fun x => hyps (Var x)) p1).
|
||||
excluded_middle (interp (fun x => hyps (Var x)) p2).
|
||||
left; propositional.
|
||||
apply ValidImplyIntro.
|
||||
assert (IF interp (fun x : var => hyps (Var x)) p2 then valid hyps p2 else valid hyps (Not p2)).
|
||||
apply IHp2; propositional.
|
||||
apply H.
|
||||
apply in_or_app; propositional.
|
||||
unfold IF_then_else in H3; propositional.
|
||||
apply valid_weaken with hyps.
|
||||
assumption.
|
||||
propositional.
|
||||
right; propositional.
|
||||
apply ValidImplyIntro.
|
||||
assert (IF interp (fun x : var => hyps (Var x)) p1 then valid hyps p1 else valid hyps (Not p1)).
|
||||
apply IHp1; propositional.
|
||||
apply H.
|
||||
apply in_or_app; propositional.
|
||||
unfold IF_then_else in H3; propositional.
|
||||
assert (IF interp (fun x : var => hyps (Var x)) p2 then valid hyps p2 else valid hyps (Not p2)).
|
||||
apply IHp2; propositional.
|
||||
apply H.
|
||||
apply in_or_app; propositional.
|
||||
unfold IF_then_else in H4; propositional.
|
||||
apply ValidImplyElim with p2.
|
||||
apply valid_weaken with hyps.
|
||||
assumption.
|
||||
propositional.
|
||||
apply ValidImplyElim with p1.
|
||||
apply ValidHyp.
|
||||
propositional.
|
||||
apply valid_weaken with hyps.
|
||||
assumption.
|
||||
propositional.
|
||||
left; propositional.
|
||||
apply ValidImplyIntro.
|
||||
assert (IF interp (fun x : var => hyps (Var x)) p1 then valid hyps p1 else valid hyps (Not p1)).
|
||||
apply IHp1; propositional.
|
||||
apply H.
|
||||
apply in_or_app; propositional.
|
||||
unfold IF_then_else in H2; propositional.
|
||||
apply ValidFalsehoodElim.
|
||||
apply ValidImplyElim with p1.
|
||||
apply valid_weaken with hyps.
|
||||
assumption.
|
||||
propositional.
|
||||
apply ValidHyp.
|
||||
propositional.
|
||||
Qed.
|
||||
|
||||
Lemma interp_valid' : forall p leftToDo alreadySplit,
|
||||
(forall x, In x (varsOf p) -> In x (alreadySplit ++ leftToDo))
|
||||
-> forall hyps, (forall x, In x alreadySplit -> hyps (Var x) \/ hyps (Not (Var x)))
|
||||
-> (forall x, hyps (Var x) \/ hyps (Not (Var x)) -> In x alreadySplit)
|
||||
-> (forall x, hyps (Var x) -> ~hyps (Not (Var x)))
|
||||
-> (forall vars : var -> Prop,
|
||||
(forall x, hyps (Var x) -> vars x)
|
||||
-> (forall x, hyps (Not (Var x)) -> ~vars x)
|
||||
-> interp vars p)
|
||||
-> valid hyps p.
|
||||
Proof.
|
||||
induct leftToDo; simplify.
|
||||
|
||||
rewrite app_nil_r in H.
|
||||
assert (IF interp (fun x : var => hyps (Var x)) p then valid hyps p else valid hyps (Not p)).
|
||||
apply interp_valid''; first_order.
|
||||
unfold IF_then_else in H4; propositional.
|
||||
exfalso.
|
||||
apply H4.
|
||||
apply H3.
|
||||
propositional.
|
||||
first_order.
|
||||
|
||||
excluded_middle (In a alreadySplit).
|
||||
|
||||
apply IHleftToDo with alreadySplit; simplify.
|
||||
apply H in H5.
|
||||
apply in_app_or in H5.
|
||||
simplify.
|
||||
apply in_or_app.
|
||||
propositional; subst.
|
||||
propositional.
|
||||
first_order.
|
||||
first_order.
|
||||
first_order.
|
||||
first_order.
|
||||
|
||||
apply ValidOrElim with (Var a) (Not (Var a)).
|
||||
apply ValidExcludedMiddle.
|
||||
|
||||
apply IHleftToDo with (alreadySplit ++ [a]); simplify.
|
||||
apply H in H5.
|
||||
apply in_app_or in H5.
|
||||
simplify.
|
||||
apply in_or_app.
|
||||
propositional; subst.
|
||||
left; apply in_or_app; propositional.
|
||||
left; apply in_or_app; simplify; propositional.
|
||||
apply in_app_or in H5.
|
||||
simplify.
|
||||
propositional; subst.
|
||||
apply H0 in H6.
|
||||
propositional.
|
||||
propositional.
|
||||
propositional.
|
||||
invert H5.
|
||||
apply in_or_app.
|
||||
simplify.
|
||||
propositional.
|
||||
apply in_or_app.
|
||||
simplify.
|
||||
first_order.
|
||||
invert H5.
|
||||
apply in_or_app.
|
||||
simplify.
|
||||
first_order.
|
||||
propositional.
|
||||
invert H5.
|
||||
invert H7.
|
||||
first_order.
|
||||
invert H5.
|
||||
first_order.
|
||||
apply H3.
|
||||
first_order.
|
||||
first_order.
|
||||
|
||||
apply IHleftToDo with (alreadySplit ++ [a]); simplify.
|
||||
apply H in H5.
|
||||
apply in_app_or in H5.
|
||||
simplify.
|
||||
apply in_or_app.
|
||||
propositional; subst.
|
||||
left; apply in_or_app; propositional.
|
||||
left; apply in_or_app; simplify; propositional.
|
||||
apply in_app_or in H5.
|
||||
simplify.
|
||||
propositional; subst.
|
||||
apply H0 in H6.
|
||||
propositional.
|
||||
propositional.
|
||||
propositional.
|
||||
invert H5.
|
||||
apply in_or_app.
|
||||
simplify.
|
||||
first_order.
|
||||
invert H5.
|
||||
apply in_or_app.
|
||||
simplify.
|
||||
propositional.
|
||||
apply in_or_app.
|
||||
simplify.
|
||||
first_order.
|
||||
propositional.
|
||||
invert H7.
|
||||
invert H7.
|
||||
invert H5.
|
||||
first_order.
|
||||
first_order.
|
||||
apply H3.
|
||||
first_order.
|
||||
first_order.
|
||||
Qed.
|
||||
|
||||
Theorem interp_valid : forall p,
|
||||
(forall vars, interp vars p)
|
||||
-> valid (fun _ => False) p.
|
||||
Proof.
|
||||
simplify.
|
||||
apply interp_valid' with (varsOf p) []; simplify; first_order.
|
||||
Qed.
|
||||
End PropositionalWithImplication.
|
||||
|
|
Loading…
Reference in a new issue