mirror of
https://github.com/achlipala/frap.git
synced 2024-11-10 00:07:51 +00:00
Commented ProgramDerivation, with chapter renumbering in Coq code
This commit is contained in:
parent
5f981335d9
commit
a8239e7925
5 changed files with 172 additions and 29 deletions
|
@ -1,5 +1,5 @@
|
|||
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
|
||||
* Chapter 17: Concurrent Separation Logic
|
||||
* Chapter 18: Concurrent Separation Logic
|
||||
* Author: Adam Chlipala
|
||||
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
|
||||
* Chapter 18: Process Algebra and Behavioral Refinement
|
||||
* Chapter 19: Process Algebra and Behavioral Refinement
|
||||
* Author: Adam Chlipala
|
||||
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
|
||||
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/
|
||||
* Some material borrowed from Fiat <http://plv.csail.mit.edu/fiat/> *)
|
||||
|
||||
Require Import FrapWithoutSets.
|
||||
Require Import Frap.
|
||||
Require Import Program Setoids.Setoid Classes.RelationClasses Classes.Morphisms Morphisms_Prop.
|
||||
Require Import Eqdep.
|
||||
|
||||
|
@ -14,17 +14,49 @@ Ltac inv_pair :=
|
|||
end.
|
||||
|
||||
|
||||
(* We have generally focused so far on proving that programs meet
|
||||
* specifications. What if we could generate programs from their
|
||||
* specifications, in ways that guarantee correctness? Let's explore that
|
||||
* direction, in the tradition of *program derivation* via
|
||||
* *stepwise refinement*. *)
|
||||
|
||||
|
||||
(** * The computation monad *)
|
||||
|
||||
Definition comp (A : Type) := A -> Prop.
|
||||
(* One counterintuitive design choice will be to represent specifications and
|
||||
* implementations in the same "language," which is essentially Gallina with the
|
||||
* added ability to pick elements nondeterministically from arbitrary sets. *)
|
||||
|
||||
(* Specifically, a process producing type [A] is represents as [comp A]. *)
|
||||
Definition comp (A : Type) := A -> Prop.
|
||||
(* The computation is represented by the set of legal values it might
|
||||
* generate. *)
|
||||
|
||||
(* Computations form a monad, with the following two operators. *)
|
||||
Definition ret {A} (x : A) : comp A := eq x.
|
||||
(* Note how [eq x] is one way of writing "the singleton set of [x],", using
|
||||
* partial application of the two-argument equality predicate [eq]. *)
|
||||
Definition bind {A B} (c1 : comp A) (c2 : A -> comp B) : comp B :=
|
||||
fun b => exists a, c1 a /\ c2 a b.
|
||||
Definition pick_ {A} (P : A -> Prop) : comp A := P.
|
||||
(* As in some of our earlier examples, [bind] is for sequencing one computation
|
||||
* after another. For this monad, existential quantification provides a natural
|
||||
* explanation of sequencing. *)
|
||||
|
||||
Definition pick_ {A} (P : A -> Prop) : comp A := P.
|
||||
(* Here is a convenient wrapper function for injecting an arbitrary set into
|
||||
* [comp]. This operator stands for nondeterministic choice of any value in the
|
||||
* set. *)
|
||||
|
||||
(* Here is the correctness condition, for when [c2] implements [c1]. From left
|
||||
* to right in the operands of [refine], we move closer to a concrete
|
||||
* implementation. *)
|
||||
Definition refine {A} (c1 c2 : comp A) :=
|
||||
forall a, c2 a -> c1 a.
|
||||
(* Note how this definition is just subset inclusion, in the right direction. *)
|
||||
|
||||
(* Next, we use Coq's *setoid* feature to declare compatibility of our
|
||||
* definitions with the [rewrite] tactic. See the Coq manual on setoids for
|
||||
* background on what we are doing and why. *)
|
||||
|
||||
Ltac morphisms := unfold refine, impl, pointwise_relation, bind, ret, pick_; hnf; first_order; subst; eauto.
|
||||
|
||||
|
@ -58,12 +90,19 @@ Proof.
|
|||
morphisms.
|
||||
Qed.
|
||||
|
||||
(** ** OK, back to the details we want to focus on. *)
|
||||
|
||||
(* Here we have one of the monad laws, showing how traditional computational
|
||||
* reduction is compatible with refinement. *)
|
||||
Theorem bind_ret : forall A B (v : A) (c2 : A -> comp B),
|
||||
refine (bind (ret v) c2) (c2 v).
|
||||
Proof.
|
||||
morphisms.
|
||||
Qed.
|
||||
|
||||
(* Here's an example specific to this monad. One way to resolve a
|
||||
* nondeterministic pick from a set is to replace it with a specific element
|
||||
* from the set. *)
|
||||
Theorem pick_one : forall {A} {P : A -> Prop} v,
|
||||
P v
|
||||
-> refine (pick_ P) (ret v).
|
||||
|
@ -77,6 +116,8 @@ Notation "x <- c1 ; c2" := (bind c1 (fun x => c2)) (at level 81, right associati
|
|||
|
||||
(** * Picking a number not in a list *)
|
||||
|
||||
(* Let's illustrate the big idea with an example derivation. *)
|
||||
|
||||
(* A specification of what it means to choose a number that is not in a
|
||||
* particular list *)
|
||||
Definition notInList (ls : list nat) :=
|
||||
|
@ -125,6 +166,8 @@ Proof.
|
|||
linear_arithmetic.
|
||||
Qed.
|
||||
|
||||
(** ** Interlude: defining some tactics for key parts of derivation *)
|
||||
|
||||
(* We run this next step to hide an evar, so that rewriting isn't too eager to
|
||||
* make up values for it. *)
|
||||
Ltac hide_evars :=
|
||||
|
@ -134,9 +177,12 @@ Ltac hide_evars :=
|
|||
| [ |- refine _ ?f ] => set f
|
||||
end.
|
||||
|
||||
(* This tactic starts a script that finds a term to refine another. *)
|
||||
Ltac begin :=
|
||||
eexists; simplify; hide_evars.
|
||||
|
||||
(* This tactic ends such a derivation, in effect undoing the effect of
|
||||
* [hide_evars]. *)
|
||||
Ltac finish :=
|
||||
match goal with
|
||||
| [ |- refine ?e (?f ?arg1 ?arg2) ] =>
|
||||
|
@ -158,24 +204,24 @@ Ltac finish :=
|
|||
unify f' e; reflexivity
|
||||
end.
|
||||
|
||||
(** ** Back to the example *)
|
||||
|
||||
(* Let's derive an efficient implementation. *)
|
||||
Theorem implementation : { f : list nat -> comp nat | forall ls, refine (notInList ls) (f ls) }.
|
||||
Theorem implementation : sig (fun f : list nat -> comp nat => forall ls, refine (notInList ls) (f ls)).
|
||||
Proof.
|
||||
begin.
|
||||
rewrite notInList_decompose.
|
||||
rewrite listMax_refines.
|
||||
setoid_rewrite increment_refines.
|
||||
(* ^-- Different tactic here to let us rewrite under a binder! *)
|
||||
rewrite bind_ret.
|
||||
rewrite increment_refines.
|
||||
finish.
|
||||
Defined.
|
||||
|
||||
(* We can extract the program that we found as a standlone, executable Gallina
|
||||
* term. *)
|
||||
Definition impl := Eval simpl in proj1_sig implementation.
|
||||
Print impl.
|
||||
|
||||
(* We'll temporarily expose the definition of [max], so we can compute neatly
|
||||
(* We'll locally expose the definition of [max], so we can compute neatly
|
||||
* here. *)
|
||||
Transparent max.
|
||||
Eval compute in impl (1 :: 7 :: 8 :: 2 :: 13 :: 6 :: nil).
|
||||
|
@ -183,13 +229,32 @@ Eval compute in impl (1 :: 7 :: 8 :: 2 :: 13 :: 6 :: nil).
|
|||
|
||||
(** * Abstract data types (ADTs) *)
|
||||
|
||||
(* Stepwise refinement can be most satisfying to build objects with multiple
|
||||
* methods. The specification of such an object is often called an abstract
|
||||
* data type (ADT), and we studied them (from a verification perspective) in
|
||||
* module DataAbstraction. Let's see how we can build implementations
|
||||
* automatically from ADTs. First, some preliminary definitions. *)
|
||||
|
||||
(* Every method inhabits this type, where [state] is the type of private state
|
||||
* for the object. *)
|
||||
Record method_ {state : Type} := {
|
||||
MethodName : string;
|
||||
MethodBody : state -> nat -> comp (state * nat)
|
||||
}.
|
||||
(* A body takes the current state as input and produces the new state as output.
|
||||
* Additionally, we have hardcoded both the parameter type and the return type
|
||||
* to [nat], for simplicity. The only wrinkle is that a body result is in the
|
||||
* [comp] monad, to let it mix features from specification and
|
||||
* implementation. *)
|
||||
|
||||
Arguments method_ : clear implicits.
|
||||
Notation "'method' name [[ self , arg ]] = body" :=
|
||||
{| MethodName := name;
|
||||
MethodBody := fun self arg => body |}
|
||||
(at level 100, self at level 0, arg at level 0).
|
||||
|
||||
(* Next, this type collects several method definitions, given a list of their
|
||||
* names. *)
|
||||
Inductive methods {state : Type} : list string -> Type :=
|
||||
| MethodsNil : methods []
|
||||
| MethodsCons : forall (m : method_ state) {names},
|
||||
|
@ -198,16 +263,15 @@ Inductive methods {state : Type} : list string -> Type :=
|
|||
|
||||
Arguments methods : clear implicits.
|
||||
|
||||
Notation "'method' name [[ self , arg ]] = body" :=
|
||||
{| MethodName := name;
|
||||
MethodBody := fun self arg => body |}
|
||||
(at level 100, self at level 0, arg at level 0).
|
||||
|
||||
(* Finally, the definition of an abstract data type, which will apply to both
|
||||
* specifications (the classical sense of ADT) and implementations. *)
|
||||
Record adt {names : list string} := {
|
||||
AdtState : Type;
|
||||
AdtConstructor : comp AdtState;
|
||||
AdtMethods : methods AdtState names
|
||||
}.
|
||||
(* An ADT has a state type, one constructor to initialize the state, and a set
|
||||
* of methods that may read and write the state. *)
|
||||
|
||||
Arguments adt : clear implicits.
|
||||
|
||||
|
@ -219,26 +283,54 @@ Notation "'ADT' { 'rep' = state 'and' 'constructor' = constr ms }" :=
|
|||
Notation "'and' m1 'and' .. 'and' mn" :=
|
||||
(MethodsCons m1 (.. (MethodsCons mn MethodsNil) ..)) (at level 101).
|
||||
|
||||
(* Here's one quick example, of a counter with duplicate "increment" methods. *)
|
||||
|
||||
Definition counter := ADT {
|
||||
rep = nat
|
||||
and constructor = ret 0
|
||||
and method "increment1"[[self, arg]] = ret (self + arg, 0)
|
||||
and method "increment2"[[self, arg]] = ret (self + arg, 0)
|
||||
and method "value"[[self, _]] = ret (self, self)
|
||||
}.
|
||||
|
||||
(* This example hasn't used the power of the [comp] monad, but we will get
|
||||
* there later. *)
|
||||
|
||||
|
||||
(** * ADT refinement *)
|
||||
|
||||
(* What does it mean to take sound implementation steps from an ADT toward an
|
||||
* efficient implementation? We formalize refinement for ADTs as well. The key
|
||||
* principle will be *simulation*, very similarly to how we used the idea for
|
||||
* compiler verification. *)
|
||||
|
||||
(* For a "before" state type [state1] and an "after" state type [state2], we
|
||||
* require choice of a simulation relation [R]. This next inductive relation
|
||||
* captures when all methods are pairwise compatible with [R], between the
|
||||
* "before" and "after" ADTs. *)
|
||||
Inductive RefineMethods {state1 state2} (R : state1 -> state2 -> Prop)
|
||||
: forall {names}, methods state1 names -> methods state2 names -> Prop :=
|
||||
| RmNil : RefineMethods R MethodsNil MethodsNil
|
||||
| RmCons : forall name names (f1 : state1 -> nat -> comp (state1 * nat))
|
||||
(f2 : state2 -> nat -> comp (state2 * nat))
|
||||
(ms1 : methods state1 names) (ms2 : methods state2 names),
|
||||
|
||||
(* This condition is the classic "simulation diagram." *)
|
||||
(forall s1 s2 arg s2' res,
|
||||
R s1 s2
|
||||
-> f2 s2 arg (s2', res)
|
||||
-> exists s1', f1 s1 arg (s1', res)
|
||||
/\ R s1' s2')
|
||||
|
||||
-> RefineMethods R ms1 ms2
|
||||
-> RefineMethods R (MethodsCons {| MethodName := name; MethodBody := f1 |} ms1)
|
||||
(MethodsCons {| MethodName := name; MethodBody := f2 |} ms2).
|
||||
|
||||
Hint Constructors RefineMethods.
|
||||
|
||||
(* When does [adt2] refine [adt1]? When there exists a simulation relation,
|
||||
* with respect to which the constructors and methods all satisfy the usual
|
||||
* simulation diagram. *)
|
||||
Record adt_refine {names} (adt1 adt2 : adt names) : Prop := {
|
||||
ArRel : AdtState adt1 -> AdtState adt2 -> Prop;
|
||||
ArConstructors : forall s2,
|
||||
|
@ -248,6 +340,7 @@ Record adt_refine {names} (adt1 adt2 : adt names) : Prop := {
|
|||
ArMethods : RefineMethods ArRel (AdtMethods adt1) (AdtMethods adt2)
|
||||
}.
|
||||
|
||||
(* We will use this handy tactic to prove ADT refinements. *)
|
||||
Ltac choose_relation R :=
|
||||
match goal with
|
||||
| [ |- adt_refine ?a ?b ] => apply (Build_adt_refine _ a b R)
|
||||
|
@ -255,13 +348,8 @@ Ltac choose_relation R :=
|
|||
|
||||
(** ** Example: numeric counter *)
|
||||
|
||||
Definition counter := ADT {
|
||||
rep = nat
|
||||
and constructor = ret 0
|
||||
and method "increment1"[[self, arg]] = ret (self + arg, 0)
|
||||
and method "increment2"[[self, arg]] = ret (self + arg, 0)
|
||||
and method "value"[[self, _]] = ret (self, self)
|
||||
}.
|
||||
(* Let's refine the previous counter spec into an implementation that maintains
|
||||
* two separate counters and adds them on demand. *)
|
||||
|
||||
Definition split_counter := ADT {
|
||||
rep = nat * nat
|
||||
|
@ -273,6 +361,7 @@ Definition split_counter := ADT {
|
|||
|
||||
Hint Extern 1 (@eq nat _ _) => simplify; linear_arithmetic.
|
||||
|
||||
(* Here is why the new implementation is correct. *)
|
||||
Theorem split_counter_ok : adt_refine counter split_counter.
|
||||
Proof.
|
||||
choose_relation (fun n p => n = fst p + snd p).
|
||||
|
@ -292,6 +381,8 @@ Qed.
|
|||
|
||||
(** * General refinement strategies *)
|
||||
|
||||
(* ADT refinement forms a preorder, as the next two theorems show. *)
|
||||
|
||||
Lemma RefineMethods_refl : forall state names (ms : methods state names),
|
||||
RefineMethods eq ms ms.
|
||||
Proof.
|
||||
|
@ -346,6 +437,13 @@ Proof.
|
|||
first_order.
|
||||
Qed.
|
||||
|
||||
(* Note the use of relation composition for [refine_trans]. *)
|
||||
|
||||
(** ** Refining constructors *)
|
||||
|
||||
(* One way to refine an ADT is to perform [comp]-level refinement within its
|
||||
* constructor definition. *)
|
||||
|
||||
Theorem refine_constructor : forall names state constr1 constr2 (ms : methods _ names),
|
||||
refine constr1 constr2
|
||||
-> adt_refine {| AdtState := state;
|
||||
|
@ -359,6 +457,13 @@ Proof.
|
|||
choose_relation (@eq state); eauto.
|
||||
Qed.
|
||||
|
||||
(** ** Refining methods *)
|
||||
|
||||
(* Conceptually quite similar, refining within methods requires more syntactic
|
||||
* framework. *)
|
||||
|
||||
(* This relation captures the process of replacing [oldbody] of method [name]
|
||||
* with [newbody]. *)
|
||||
Inductive ReplaceMethod {state} (name : string)
|
||||
(oldbody newbody : state -> nat -> comp (state * nat))
|
||||
: forall {names}, methods state names -> methods state names -> Prop :=
|
||||
|
@ -373,7 +478,9 @@ Inductive ReplaceMethod {state} (name : string)
|
|||
(MethodsCons {| MethodName := name'; MethodBody := oldbody' |} ms1)
|
||||
(MethodsCons {| MethodName := name'; MethodBody := oldbody' |} ms2).
|
||||
|
||||
Theorem ReplaceMethod_ok : forall state name
|
||||
(* Let's skip ahead to the next [Theorem]. *)
|
||||
|
||||
Lemma ReplaceMethod_ok : forall state name
|
||||
(oldbody newbody : state -> nat -> comp (state * nat))
|
||||
names (ms1 ms2 : methods state names),
|
||||
(forall s arg, refine (oldbody s arg) (newbody s arg))
|
||||
|
@ -391,6 +498,7 @@ Qed.
|
|||
|
||||
Hint Resolve ReplaceMethod_ok.
|
||||
|
||||
(* It is OK to replace a method body if the new refines the old as a [comp]. *)
|
||||
Theorem refine_method : forall state name (oldbody newbody : state -> nat -> comp (state * nat))
|
||||
names (ms1 ms2 : methods state names) constr,
|
||||
(forall s arg, refine (oldbody s arg) (newbody s arg))
|
||||
|
@ -406,6 +514,12 @@ Proof.
|
|||
choose_relation (@eq state); eauto.
|
||||
Qed.
|
||||
|
||||
(** ** Representation changes *)
|
||||
|
||||
(* Some of the most interesting refinements select new data structures. That
|
||||
* is, they pick new state types. Here we formalize that idea in terms of
|
||||
* existence of an *abstraction function* from the new state type to the old. *)
|
||||
|
||||
Inductive RepChangeMethods {state1 state2} (absfunc : state2 -> state1)
|
||||
: forall {names}, methods state1 names -> methods state2 names -> Prop :=
|
||||
| RchNil :
|
||||
|
@ -418,6 +532,12 @@ Inductive RepChangeMethods {state1 state2} (absfunc : state2 -> state1)
|
|||
p <- oldbody (absfunc s) arg;
|
||||
s' <- pick s' where absfunc s' = fst p;
|
||||
ret (s', snd p)) |} ms2).
|
||||
(* Interestingly, we managed to rewrite all method bodies automatically, to be
|
||||
* compatible with a new data structure! The catch is that our language of
|
||||
* method bodies is inherently noncomputational. We leave nontrivial work for
|
||||
* ourselves, in further refinement of method bodies to remove "pick"
|
||||
* operations. Note how the generic method template above relies on "pick"
|
||||
* operations to invert abstraction functions. *)
|
||||
|
||||
Lemma RepChangeMethods_ok : forall state1 state2 (absfunc : state2 -> state1)
|
||||
names (ms1 : methods state1 names) (ms2 : methods state2 names),
|
||||
|
@ -461,12 +581,19 @@ Ltac refine_method nam := eapply refine_trans; [ eapply refine_method with (name
|
|||
| repeat (refine (RepmHead _ _ _ _ _)
|
||||
|| (refine (RepmSkip _ _ _ _ _ _ _ _ _ _); [ equality | ])) ];
|
||||
cbv beta; simplify; hide_evars | ].
|
||||
(* Don't be thrown off by the [refine] tactic used here. It is not related to
|
||||
* our notion of refinement! See module SubsetTypes for an explanation of
|
||||
* it. *)
|
||||
|
||||
Ltac refine_finish := apply refine_refl.
|
||||
|
||||
(** ** Example: the numeric counter again *)
|
||||
|
||||
Definition derived_counter : { counter' | adt_refine counter counter' }.
|
||||
(* Let's generate the two-counter variant through the process of finding a
|
||||
* proof, in contrast to theorem [split_counter_ok], which started with the full
|
||||
* code of the transformed ADT. *)
|
||||
|
||||
Definition derived_counter : sig (adt_refine counter).
|
||||
unfold counter; eexists.
|
||||
refine_rep (fun p => fst p + snd p).
|
||||
|
||||
|
@ -505,15 +632,28 @@ Eval simpl in proj1_sig derived_counter.
|
|||
|
||||
(** * Another refinement strategy: introducing a cache (a.k.a. finite differencing) *)
|
||||
|
||||
(* Some methods begin life as expensive computations, such that it pays off to
|
||||
* precompute their values. A generic refinement strategy follows this plan by
|
||||
* introducing *caches*. *)
|
||||
|
||||
(* Here, [name] names a method whose body leaves the state alone and returns the
|
||||
* result of [func] applied to that state. *)
|
||||
Inductive CachingMethods {state} (name : string) (func : state -> nat)
|
||||
: forall {names}, methods state names -> methods (state * nat) names -> Prop :=
|
||||
| CmNil :
|
||||
CachingMethods name func MethodsNil MethodsNil
|
||||
|
||||
(* Here is how we rewrite [name] itself. We are extending state with an extra
|
||||
* cache of [func]'s value, so it is legal just to return that cache. *)
|
||||
| CmCached : forall names (ms1 : methods state names) (ms2 : methods _ names),
|
||||
CachingMethods name func ms1 ms2
|
||||
-> CachingMethods name func
|
||||
(MethodsCons {| MethodName := name; MethodBody := (fun s _ => ret (s, func s)) |} ms1)
|
||||
(MethodsCons {| MethodName := name; MethodBody := (fun s arg => ret (s, snd s)) |} ms2)
|
||||
|
||||
(* Any other method now picks up an obligation to recompute the cache value
|
||||
* whenever changing the state. We express that recomputation with a pick, to
|
||||
* be refined later into efficient logic. *)
|
||||
| CmDefault : forall name' names oldbody (ms1 : methods state names) (ms2 : methods _ names),
|
||||
name' <> name
|
||||
-> CachingMethods name func ms1 ms2
|
||||
|
@ -575,6 +715,8 @@ Ltac refine_cache nam := eapply refine_trans; [ eapply refine_cache with (name :
|
|||
|
||||
(** ** An example with lists of numbers *)
|
||||
|
||||
(* Let's work out an example of caching. *)
|
||||
|
||||
Definition sum := fold_right plus 0.
|
||||
|
||||
Definition nats := ADT {
|
||||
|
@ -584,7 +726,7 @@ Definition nats := ADT {
|
|||
and method "sum"[[self, _]] = ret (self, sum self)
|
||||
}.
|
||||
|
||||
Definition optimized_nats : { nats' | adt_refine nats nats' }.
|
||||
Definition optimized_nats : sig (adt_refine nats).
|
||||
unfold nats; eexists.
|
||||
|
||||
refine_cache "sum".
|
||||
|
|
|
@ -27,9 +27,10 @@ The main narrative, also present in the book PDF, presents standard program-proo
|
|||
* Chapter 13: `DeepAndShallowEmbeddings.v`
|
||||
* Chapter 14: `SeparationLogic.v`
|
||||
* Chapter 15: `Connecting.v`
|
||||
* Chapter 16: `SharedMemory.v`
|
||||
* Chapter 17: `ConcurrentSeparationLogic.v`
|
||||
* Chapter 18: `MessagesAndRefinement.v`
|
||||
* Chapter 16: `ProgramDerivation.v`
|
||||
* Chapter 17: `SharedMemory.v`
|
||||
* Chapter 18: `ConcurrentSeparationLogic.v`
|
||||
* Chapter 19: `MessagesAndRefinement.v`
|
||||
|
||||
There are also two supplementary files that are independent of the main narrative, for introducing programming with dependent types, a distinctive Coq feature that we neither use nor recommend for the problem sets, but which many students find interesting (and useful in other contexts).
|
||||
* `SubsetTypes.v`: a first introduction to dependent types by attaching predicates to normal types (used after `CompilerCorrectness.v` in the last course offering)
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
|
||||
* Chapter 16: Operational Semantics for Shared-Memory Concurrency
|
||||
* Chapter 17: Operational Semantics for Shared-Memory Concurrency
|
||||
* Author: Adam Chlipala
|
||||
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
|
||||
|
||||
|
|
Loading…
Reference in a new issue