mirror of
https://github.com/achlipala/frap.git
synced 2025-01-07 08:34:15 +00:00
SessionTypes: multiparty
This commit is contained in:
parent
7fc57d795c
commit
a86ecf84ad
1 changed files with 823 additions and 0 deletions
823
SessionTypes.v
823
SessionTypes.v
|
@ -239,3 +239,826 @@ Proof.
|
|||
Qed.
|
||||
|
||||
End TwoParty.
|
||||
|
||||
|
||||
(** * Multiparty Session Types *)
|
||||
|
||||
Module Multiparty.
|
||||
|
||||
(** ** Defining the type system *)
|
||||
|
||||
Inductive type :=
|
||||
| Communicate (ch : channel) (A : Set) (t : A -> type)
|
||||
| TDone.
|
||||
|
||||
Delimit Scope st_scope with st.
|
||||
Bind Scope st_scope with type.
|
||||
Notation "!!! ch ( x : A ) ; k" := (Communicate ch (fun x : A => k)%st) (right associativity, at level 45, ch at level 0, x at level 0) : st_scope.
|
||||
|
||||
Section parties.
|
||||
Variable party : Set.
|
||||
|
||||
Record parties := {
|
||||
Sender : party;
|
||||
Receiver : party
|
||||
}.
|
||||
|
||||
Variable channels : channel -> parties.
|
||||
|
||||
Inductive hasty (p : party) : bool -> proc -> type -> Prop :=
|
||||
| HtSend : forall ch rr (A : Set) (v : A) k t,
|
||||
channels ch = {| Sender := p; Receiver := rr |}
|
||||
-> rr <> p
|
||||
-> hasty p false k (t v)
|
||||
-> hasty p false (Send ch v k) (Communicate ch t)
|
||||
| HtRecv : forall mayNotSend ch sr (A : Set) (k : A -> _) t (witness : A),
|
||||
channels ch = {| Sender := sr; Receiver := p |}
|
||||
-> sr <> p
|
||||
-> (forall v, hasty p mayNotSend (k v) (t v))
|
||||
-> hasty p mayNotSend (Recv ch k) (Communicate ch t)
|
||||
| HtSkip : forall mayNotSend ch sr rr (A : Set) pr (t : A -> _) (witness : A),
|
||||
channels ch = {| Sender := sr; Receiver := rr |}
|
||||
-> sr <> p
|
||||
-> rr <> p
|
||||
-> (forall v, hasty p true pr (t v))
|
||||
-> hasty p mayNotSend pr (Communicate ch t)
|
||||
| HtDone : forall mayNotSend,
|
||||
hasty p mayNotSend Done TDone.
|
||||
End parties.
|
||||
|
||||
(** * Parallel execution preserves the existence of complementary session types. *)
|
||||
|
||||
Definition trsys_of pr := {|
|
||||
Initial := {pr};
|
||||
Step := lstepSilent
|
||||
|}.
|
||||
|
||||
Hint Constructors hasty.
|
||||
|
||||
Lemma hasty_not_Block : forall party (channels: _ -> parties party) p mns ch pr t,
|
||||
hasty channels p mns (BlockChannel ch pr) t
|
||||
-> False.
|
||||
Proof.
|
||||
induct 1; auto.
|
||||
Unshelve.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Lemma hasty_not_Dup : forall party (channels: _ -> parties party) p mns pr t,
|
||||
hasty channels p mns (Dup pr) t
|
||||
-> False.
|
||||
Proof.
|
||||
induct 1; auto.
|
||||
Unshelve.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Lemma hasty_not_Par : forall party (channels: _ -> parties party) p mns pr1 pr2 t,
|
||||
hasty channels p mns (pr1 || pr2) t
|
||||
-> False.
|
||||
Proof.
|
||||
induct 1; auto.
|
||||
Unshelve.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Hint Immediate hasty_not_Block hasty_not_Dup hasty_not_Par.
|
||||
|
||||
Lemma input_typed' : forall party (channels : _ -> parties party) p mns ch (A : Set) (k : A -> _) t,
|
||||
hasty channels p mns (Recv ch k) t
|
||||
-> exists sr (witness : A), channels ch = {| Sender := sr; Receiver := p |}
|
||||
/\ sr <> p.
|
||||
Proof.
|
||||
induct 1; eauto.
|
||||
Unshelve.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Lemma input_typed : forall party (channels: _ -> parties party) pr ch A v pr',
|
||||
lstep pr (Input {| Channel := ch; TypeOf := A; Value := v |}) pr'
|
||||
-> forall p mns t, hasty channels p mns pr t
|
||||
-> exists sr k, pr = Recv ch k /\ pr' = k v
|
||||
/\ channels ch = {| Sender := sr; Receiver := p |}
|
||||
/\ sr <> p.
|
||||
Proof.
|
||||
induct 1; simplify; try solve [ exfalso; eauto ].
|
||||
eapply input_typed' in H.
|
||||
first_order.
|
||||
eauto 6.
|
||||
Qed.
|
||||
|
||||
Lemma output_typed' : forall party (channels : _ -> parties party) p mns ch (A : Set) (v : A) k t,
|
||||
hasty channels p mns (Send ch v k) t
|
||||
-> exists rr, channels ch = {| Sender := p; Receiver := rr |}
|
||||
/\ rr <> p.
|
||||
Proof.
|
||||
induct 1; eauto.
|
||||
Unshelve.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Lemma output_typed : forall party (channels: _ -> parties party) pr ch A v pr',
|
||||
lstep pr (Output {| Channel := ch; TypeOf := A; Value := v |}) pr'
|
||||
-> forall p mns t, hasty channels p mns pr t
|
||||
-> exists k, pr = Send ch v k /\ pr' = k.
|
||||
Proof.
|
||||
induct 1; simplify; try solve [ exfalso; eauto ].
|
||||
eapply output_typed' in H.
|
||||
first_order.
|
||||
eauto.
|
||||
Qed.
|
||||
|
||||
Inductive typed_multistate party (channels : channel -> parties party) (t : type)
|
||||
: list party -> proc -> Prop :=
|
||||
| TmsNil : typed_multistate channels t [] Done
|
||||
| TmsCons : forall p ps pr1 pr2,
|
||||
hasty channels p false pr1 t
|
||||
-> typed_multistate channels t ps pr2
|
||||
-> typed_multistate channels t (p :: ps) (pr1 || pr2).
|
||||
|
||||
Hint Constructors typed_multistate.
|
||||
|
||||
Lemma no_silent_steps : forall party (channels : _ -> parties party) p mns pr t,
|
||||
hasty channels p mns pr t
|
||||
-> forall pr', lstep pr Silent pr'
|
||||
-> False.
|
||||
Proof.
|
||||
induct 1; invert 1; try solve [ exfalso; eauto ].
|
||||
Unshelve.
|
||||
assumption.
|
||||
assumption.
|
||||
assumption.
|
||||
assumption.
|
||||
assumption.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Hint Immediate no_silent_steps.
|
||||
|
||||
Lemma complementarity_forever_done : forall party (channels : _ -> parties party) pr pr',
|
||||
lstep pr Silent pr'
|
||||
-> forall all_parties, typed_multistate channels TDone all_parties pr
|
||||
-> False.
|
||||
Proof.
|
||||
induct 1; invert 1; eauto.
|
||||
invert H5.
|
||||
invert H.
|
||||
invert H5.
|
||||
invert H.
|
||||
Qed.
|
||||
|
||||
Lemma mayNotSend_really : forall party (channels : _ -> parties party) p pr t,
|
||||
hasty channels p true pr t
|
||||
-> forall m pr', lstep pr (Output m) pr'
|
||||
-> False.
|
||||
Proof.
|
||||
induct 1; eauto; invert 1.
|
||||
Unshelve.
|
||||
assumption.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Hint Immediate mayNotSend_really.
|
||||
|
||||
Lemma may_not_output : forall (party : Set) pr pr' ch (A : Set) (v : A),
|
||||
lstep pr (Output {| Channel := ch; Value := v |}) pr'
|
||||
-> forall (channels : _ -> parties party) p t,
|
||||
hasty channels p true pr t
|
||||
-> False.
|
||||
Proof.
|
||||
induct 1; invert 1; simplify; try solve [ exfalso; eauto ].
|
||||
Unshelve.
|
||||
assumption.
|
||||
assumption.
|
||||
assumption.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Hint Immediate may_not_output.
|
||||
|
||||
Lemma output_is_legit : forall (party : Set) pr pr' ch (A : Set) (v : A),
|
||||
lstep pr (Output {| Channel := ch; Value := v |}) pr'
|
||||
-> forall (channels : _ -> parties party) all_parties ch' (A' : Set) (k : A' -> _),
|
||||
typed_multistate channels (Communicate ch' k) all_parties pr
|
||||
-> In (Sender (channels ch')) all_parties.
|
||||
Proof.
|
||||
induct 1; invert 1; simplify; try solve [ exfalso; eauto ].
|
||||
|
||||
invert H4.
|
||||
rewrite H3 in *; simplify; eauto.
|
||||
invert H.
|
||||
exfalso; eauto.
|
||||
|
||||
invert H4.
|
||||
rewrite H3 in *; simplify; eauto.
|
||||
eauto.
|
||||
eauto.
|
||||
|
||||
Unshelve.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Lemma output_is_first : forall (party : Set) pr pr' ch (A : Set) (v : A),
|
||||
lstep pr (Output {| Channel := ch; Value := v |}) pr'
|
||||
-> forall (channels : _ -> parties party) all_parties ch' (A' : Set) (k : A' -> _),
|
||||
typed_multistate channels (Communicate ch' k) all_parties pr
|
||||
-> ch' = ch.
|
||||
Proof.
|
||||
induct 1; invert 1; simplify; try solve [ exfalso; eauto ].
|
||||
|
||||
invert H4.
|
||||
invert H; auto.
|
||||
invert H.
|
||||
exfalso; eauto.
|
||||
|
||||
eauto.
|
||||
|
||||
Unshelve.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Lemma input_is_legit' : forall (party : Set) pr ch (A : Set) (v : A)
|
||||
(channels : _ -> parties party) p mns t,
|
||||
hasty channels p mns pr t
|
||||
-> forall pr', lstep pr (Input {| Channel := ch; Value := v |}) pr'
|
||||
-> p = Receiver (channels ch).
|
||||
Proof.
|
||||
induct 1; eauto; invert 1.
|
||||
rewrite H; auto.
|
||||
Qed.
|
||||
|
||||
Lemma input_is_legit : forall (party : Set) pr pr' ch (A : Set) (v : A),
|
||||
lstep pr (Input {| Channel := ch; Value := v |}) pr'
|
||||
-> forall (channels : _ -> parties party) all_parties t,
|
||||
typed_multistate channels t all_parties pr
|
||||
-> In (Receiver (channels ch)) all_parties.
|
||||
Proof.
|
||||
induct 1; invert 1; simplify; try solve [ exfalso; eauto ].
|
||||
|
||||
invert H4.
|
||||
invert H.
|
||||
invert H.
|
||||
rewrite H0 in *; simplify; eauto.
|
||||
|
||||
eapply input_is_legit' in H; eauto.
|
||||
|
||||
invert H.
|
||||
|
||||
eauto.
|
||||
|
||||
Unshelve.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Lemma absolutely_nobody : forall (party : Set) pr pr',
|
||||
lstep pr Silent pr'
|
||||
-> forall (channels : _ -> parties party) all_parties ch (A : Set) (k : A -> _),
|
||||
typed_multistate channels (Communicate ch k) all_parties pr
|
||||
-> (In (Sender (channels ch)) all_parties -> False)
|
||||
-> (In (Receiver (channels ch)) all_parties -> False)
|
||||
-> False.
|
||||
Proof.
|
||||
induct 1; invert 1; simplify; try solve [ exfalso; eauto ].
|
||||
|
||||
invert H4.
|
||||
rewrite H7 in *; simplify; eauto.
|
||||
rewrite H9 in *; simplify; eauto.
|
||||
eapply IHlstep; eauto.
|
||||
|
||||
invert H5.
|
||||
rewrite H8 in *; simplify; eauto.
|
||||
rewrite H10 in *; simplify; eauto.
|
||||
eapply output_is_legit in H0; eauto.
|
||||
|
||||
invert H5.
|
||||
rewrite H8 in *; simplify; eauto.
|
||||
rewrite H10 in *; simplify; eauto.
|
||||
eauto.
|
||||
|
||||
Unshelve.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Lemma comm_stuck : forall (party : Set) pr pr',
|
||||
lstep pr Silent pr'
|
||||
-> forall (channels : _ -> parties party) all_parties ch (A : Set) (k : A -> _),
|
||||
typed_multistate channels (Communicate ch k) all_parties pr
|
||||
-> (In (Sender (channels ch)) all_parties
|
||||
-> In (Receiver (channels ch)) all_parties
|
||||
-> False)
|
||||
-> False.
|
||||
Proof.
|
||||
induct 1; invert 1; simplify; try solve [ exfalso; eauto ].
|
||||
|
||||
invert H5.
|
||||
invert H.
|
||||
invert H.
|
||||
eapply output_is_legit in H0; eauto.
|
||||
rewrite H9 in *; simplify; eauto.
|
||||
rewrite H7 in *; simplify.
|
||||
eapply output_is_first in H0; eauto.
|
||||
subst.
|
||||
eapply input_is_legit' in H; eauto.
|
||||
subst.
|
||||
rewrite H7 in *.
|
||||
simplify.
|
||||
eauto.
|
||||
|
||||
invert H5.
|
||||
invert H.
|
||||
rewrite H7 in *; simplify.
|
||||
eapply input_is_legit in H0; eauto.
|
||||
rewrite H7 in *; simplify.
|
||||
eauto.
|
||||
invert H.
|
||||
eauto.
|
||||
|
||||
Unshelve.
|
||||
assumption.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Lemma hasty_relax : forall party (channels : _ -> parties party) p mns pr t,
|
||||
hasty channels p mns pr t
|
||||
-> hasty channels p false pr t.
|
||||
Proof.
|
||||
induct 1; eauto.
|
||||
Qed.
|
||||
|
||||
Local Hint Immediate hasty_relax.
|
||||
|
||||
Lemma complementarity_preserve_unused : forall party (channels : _ -> parties party)
|
||||
pr ch (A : Set) (t : A -> _) all_parties,
|
||||
typed_multistate channels (Communicate ch t) all_parties pr
|
||||
-> ~In (Sender (channels ch)) all_parties
|
||||
-> ~In (Receiver (channels ch)) all_parties
|
||||
-> forall v, typed_multistate channels (t v) all_parties pr.
|
||||
Proof.
|
||||
induct 1; simplify; eauto.
|
||||
invert H.
|
||||
rewrite H6 in *; simplify.
|
||||
equality.
|
||||
rewrite H8 in *; simplify.
|
||||
propositional.
|
||||
rewrite H6 in *; simplify.
|
||||
propositional.
|
||||
eauto.
|
||||
Qed.
|
||||
|
||||
Lemma hasty_output : forall pr party (channels : _ -> parties party) p mns t,
|
||||
hasty channels p mns pr t
|
||||
-> forall ch (A : Set) (v : A) pr', lstep pr (Output {| Channel := ch; Value := v |}) pr'
|
||||
-> Sender (channels ch) = p.
|
||||
Proof.
|
||||
induct 1; invert 1.
|
||||
rewrite H; auto.
|
||||
eauto.
|
||||
exfalso; eauto.
|
||||
exfalso; eauto.
|
||||
exfalso; eauto.
|
||||
|
||||
Unshelve.
|
||||
assumption.
|
||||
assumption.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Lemma complementarity_find_sender : forall party (channels : _ -> parties party) pr ch (A : Set) (v : A) pr',
|
||||
lstep pr (Output {| Channel := ch; Value := v |}) pr'
|
||||
-> forall (t : A -> _) all_parties,
|
||||
typed_multistate channels (Communicate ch t) all_parties pr
|
||||
-> NoDup all_parties
|
||||
-> In (Sender (channels ch)) all_parties
|
||||
-> ~In (Receiver (channels ch)) all_parties
|
||||
-> typed_multistate channels (t v) all_parties pr'.
|
||||
Proof.
|
||||
induct 1; invert 1; simplify; try solve [ exfalso; eauto ].
|
||||
|
||||
invert H0.
|
||||
generalize dependent H.
|
||||
invert H4.
|
||||
invert 1.
|
||||
econstructor.
|
||||
eauto.
|
||||
eapply complementarity_preserve_unused; eauto.
|
||||
rewrite H6; assumption.
|
||||
invert 1.
|
||||
rewrite H6 in *; simplify.
|
||||
eapply hasty_output in H; eauto.
|
||||
rewrite H6 in *; simplify.
|
||||
equality.
|
||||
|
||||
invert H0.
|
||||
invert H4.
|
||||
rewrite H9 in *; simplify.
|
||||
eapply output_is_legit in H5; try eassumption.
|
||||
rewrite H9 in *; simplify.
|
||||
propositional.
|
||||
rewrite H11 in *; simplify.
|
||||
propositional.
|
||||
rewrite H9 in *; simplify.
|
||||
|
||||
eapply IHlstep in H5; try (eassumption || reflexivity).
|
||||
2: rewrite H9; simplify; equality.
|
||||
2: rewrite H9; simplify; equality.
|
||||
eauto.
|
||||
|
||||
Unshelve.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Lemma complementarity_find_receiver : forall party (channels : _ -> parties party) pr ch (A : Set) (v : A) pr',
|
||||
lstep pr (Input {| Channel := ch; Value := v |}) pr'
|
||||
-> forall (t : A -> _) all_parties,
|
||||
typed_multistate channels (Communicate ch t) all_parties pr
|
||||
-> NoDup all_parties
|
||||
-> ~In (Sender (channels ch)) all_parties
|
||||
-> In (Receiver (channels ch)) all_parties
|
||||
-> typed_multistate channels (t v) all_parties pr'.
|
||||
Proof.
|
||||
induct 1; invert 1; simplify; try solve [ exfalso; eauto ].
|
||||
|
||||
invert H0.
|
||||
generalize dependent H.
|
||||
invert H4.
|
||||
invert 1.
|
||||
invert 1.
|
||||
econstructor.
|
||||
eauto.
|
||||
eapply complementarity_preserve_unused; eauto.
|
||||
rewrite H10; assumption.
|
||||
rewrite H6 in *; simplify.
|
||||
eapply input_is_legit' in H; eauto.
|
||||
rewrite H6 in *; simplify; equality.
|
||||
|
||||
invert H0.
|
||||
invert H4.
|
||||
rewrite H9 in *; simplify.
|
||||
eapply input_is_legit in H; try eassumption.
|
||||
rewrite H9 in *; simplify.
|
||||
propositional.
|
||||
rewrite H11 in *; simplify.
|
||||
propositional.
|
||||
eapply input_is_legit in H; try eassumption.
|
||||
rewrite H11 in *; simplify.
|
||||
propositional.
|
||||
eapply IHlstep in H5; try (eassumption || reflexivity).
|
||||
2: rewrite H9 in *; simplify; equality.
|
||||
2: rewrite H9 in *; simplify; equality.
|
||||
eauto.
|
||||
|
||||
Unshelve.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Lemma output_is_legit' : forall party (channels : _ -> parties party) p mns pr t,
|
||||
hasty channels p mns pr t
|
||||
-> forall ch (A : Set) (v : A) pr', lstep pr (Output {| Channel := ch; Value := v |}) pr'
|
||||
-> p = Sender (channels ch).
|
||||
Proof.
|
||||
induct 1; invert 1; simplify; try solve [ exfalso; eauto ].
|
||||
rewrite H; auto.
|
||||
|
||||
Unshelve.
|
||||
assumption.
|
||||
assumption.
|
||||
assumption.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Lemma complementarity_forever' : forall party (channels : _ -> parties party) pr pr',
|
||||
lstep pr Silent pr'
|
||||
-> forall ch (A : Set) (t : A -> _) all_parties,
|
||||
typed_multistate channels (Communicate ch t) all_parties pr
|
||||
-> NoDup all_parties
|
||||
-> In (Sender (channels ch)) all_parties
|
||||
-> In (Receiver (channels ch)) all_parties
|
||||
-> exists v, typed_multistate channels (t v) all_parties pr'.
|
||||
Proof.
|
||||
induct 1; invert 1; simplify; try solve [ exfalso; eauto ].
|
||||
|
||||
invert H0.
|
||||
invert H4.
|
||||
rewrite H9 in *; simplify.
|
||||
propositional; try equality.
|
||||
|
||||
exfalso; eapply comm_stuck; try eassumption.
|
||||
rewrite H9; simplify; eauto.
|
||||
|
||||
exfalso; eapply comm_stuck; try eassumption.
|
||||
rewrite H11; simplify; eauto.
|
||||
|
||||
rewrite H9 in *; simplify.
|
||||
apply IHlstep in H5; try assumption.
|
||||
2: rewrite H9; simplify; equality.
|
||||
2: rewrite H9; simplify; equality.
|
||||
first_order; eauto.
|
||||
|
||||
invert H1.
|
||||
generalize dependent H.
|
||||
invert H5.
|
||||
invert 1.
|
||||
invert 1.
|
||||
eexists.
|
||||
econstructor.
|
||||
eauto.
|
||||
eapply complementarity_find_sender; try eassumption.
|
||||
rewrite H11 in *; simplify; equality.
|
||||
rewrite H11 in *; simplify; equality.
|
||||
rewrite H7 in *; simplify.
|
||||
eapply input_is_legit' in H; eauto.
|
||||
eapply output_is_first in H6; try eassumption.
|
||||
subst.
|
||||
rewrite H7 in *; simplify; equality.
|
||||
|
||||
invert H1.
|
||||
generalize dependent H.
|
||||
invert H5.
|
||||
invert 1.
|
||||
eexists.
|
||||
econstructor.
|
||||
eauto.
|
||||
eapply complementarity_find_receiver; try eassumption.
|
||||
rewrite H7 in *; simplify; equality.
|
||||
rewrite H7 in *; simplify; equality.
|
||||
invert 1.
|
||||
rewrite H7 in *; simplify.
|
||||
exfalso; eauto.
|
||||
|
||||
Unshelve.
|
||||
assumption.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Lemma complementarity_forever : forall party (channels : _ -> parties party) all_parties pr t,
|
||||
NoDup all_parties
|
||||
-> (forall p, In p all_parties)
|
||||
-> typed_multistate channels t all_parties pr
|
||||
-> invariantFor (trsys_of pr)
|
||||
(fun pr' => exists t',
|
||||
typed_multistate channels t' all_parties pr').
|
||||
Proof.
|
||||
simplify.
|
||||
apply invariant_induction; simplify.
|
||||
|
||||
propositional; subst.
|
||||
eauto.
|
||||
|
||||
clear pr t H1.
|
||||
first_order.
|
||||
cases x.
|
||||
eapply complementarity_forever' in H1; try eassumption.
|
||||
first_order.
|
||||
eauto.
|
||||
eauto.
|
||||
|
||||
exfalso; eauto using complementarity_forever_done.
|
||||
Qed.
|
||||
|
||||
Inductive inert : proc -> Prop :=
|
||||
| InertDone : inert Done
|
||||
| InertPar : forall pr1 pr2,
|
||||
inert pr1
|
||||
-> inert pr2
|
||||
-> inert (pr1 || pr2).
|
||||
|
||||
Hint Constructors inert.
|
||||
|
||||
Lemma typed_multistate_inert : forall party (channels : _ -> parties party) all_parties pr,
|
||||
typed_multistate channels TDone all_parties pr
|
||||
-> inert pr.
|
||||
Proof.
|
||||
induct 1; eauto.
|
||||
invert H; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Immediate typed_multistate_inert.
|
||||
|
||||
Lemma deadlock_find_receiver : forall party (channels : _ -> parties party) all_parties
|
||||
ch (A : Set) (k : A -> _) pr,
|
||||
typed_multistate channels (Communicate ch k) all_parties pr
|
||||
-> In (Receiver (channels ch)) all_parties
|
||||
-> forall v : A, exists pr', lstep pr (Input {| Channel := ch; Value := v |}) pr'.
|
||||
Proof.
|
||||
induct 1; simplify; propositional; subst.
|
||||
|
||||
invert H.
|
||||
rewrite H4 in *; simplify.
|
||||
equality.
|
||||
eauto.
|
||||
rewrite H4 in *; simplify.
|
||||
equality.
|
||||
|
||||
invert H.
|
||||
rewrite H6 in *; simplify.
|
||||
specialize (H1 v).
|
||||
first_order.
|
||||
eauto.
|
||||
rewrite H8 in *; simplify.
|
||||
eauto.
|
||||
|
||||
rewrite H6 in *; simplify.
|
||||
specialize (H1 v).
|
||||
first_order.
|
||||
eauto.
|
||||
Qed.
|
||||
|
||||
Lemma deadlock_find_sender : forall party (channels : _ -> parties party) all_parties
|
||||
ch (A : Set) (k : A -> _) pr,
|
||||
typed_multistate channels (Communicate ch k) all_parties pr
|
||||
-> In (Sender (channels ch)) all_parties
|
||||
-> exists (v : A) pr', lstep pr (Output {| Channel := ch; Value := v |}) pr'.
|
||||
Proof.
|
||||
induct 1; simplify; propositional; subst.
|
||||
|
||||
invert H.
|
||||
rewrite H4 in *; simplify.
|
||||
eauto.
|
||||
rewrite H6 in *; simplify.
|
||||
equality.
|
||||
rewrite H4 in *; simplify.
|
||||
equality.
|
||||
|
||||
first_order.
|
||||
invert H.
|
||||
rewrite H6 in *; simplify.
|
||||
eauto.
|
||||
rewrite H8 in *; simplify.
|
||||
eauto.
|
||||
|
||||
eauto.
|
||||
Qed.
|
||||
|
||||
Lemma no_deadlock' : forall party (channels : _ -> parties party) all_parties
|
||||
ch (A : Set) (k : A -> _) pr,
|
||||
NoDup all_parties
|
||||
-> typed_multistate channels (Communicate ch k) all_parties pr
|
||||
-> In (Sender (channels ch)) all_parties
|
||||
-> In (Receiver (channels ch)) all_parties
|
||||
-> exists pr', lstep pr Silent pr'.
|
||||
Proof.
|
||||
induct 2; simplify; propositional; subst.
|
||||
|
||||
invert H0.
|
||||
rewrite H6 in *; simplify.
|
||||
equality.
|
||||
rewrite H8 in *; simplify.
|
||||
equality.
|
||||
rewrite H6 in *; simplify.
|
||||
equality.
|
||||
|
||||
invert H0.
|
||||
rewrite H6 in *; simplify.
|
||||
eapply deadlock_find_receiver in H1.
|
||||
first_order; eauto.
|
||||
rewrite H6; assumption.
|
||||
rewrite H8 in *; simplify.
|
||||
equality.
|
||||
rewrite H6 in *; simplify.
|
||||
equality.
|
||||
|
||||
invert H0.
|
||||
rewrite H6 in *; simplify.
|
||||
equality.
|
||||
rewrite H8 in *; simplify.
|
||||
eapply deadlock_find_sender in H1.
|
||||
first_order; eauto.
|
||||
rewrite H8; assumption.
|
||||
rewrite H6 in *; simplify.
|
||||
equality.
|
||||
|
||||
invert H.
|
||||
apply IHtyped_multistate in H7; auto.
|
||||
first_order; eauto.
|
||||
Qed.
|
||||
|
||||
Theorem no_deadlock : forall party (channels : _ -> parties party) all_parties pr t,
|
||||
NoDup all_parties
|
||||
-> (forall p, In p all_parties)
|
||||
-> typed_multistate channels t all_parties pr
|
||||
-> invariantFor (trsys_of pr)
|
||||
(fun pr => inert pr
|
||||
\/ exists pr', lstep pr Silent pr').
|
||||
Proof.
|
||||
simplify.
|
||||
eapply invariant_weaken.
|
||||
eapply complementarity_forever; eassumption.
|
||||
|
||||
clear pr t H1.
|
||||
simplify; first_order.
|
||||
cases x.
|
||||
right; eapply no_deadlock'; try eassumption; eauto.
|
||||
eauto.
|
||||
Qed.
|
||||
|
||||
Inductive store_party := Customer | Merchant.
|
||||
|
||||
Section online_store.
|
||||
Variables request_product in_stock_or_not send_payment_info payment_success add_review : channel.
|
||||
|
||||
Definition customer (product payment_info : string) :=
|
||||
!!request_product(product);
|
||||
??in_stock_or_not(worked : bool);
|
||||
if worked then
|
||||
!!send_payment_info(payment_info);
|
||||
??payment_success(worked_again : bool);
|
||||
if worked_again then
|
||||
!!add_review((product, "awesome"));
|
||||
Done
|
||||
else
|
||||
Done
|
||||
else
|
||||
Done.
|
||||
|
||||
Definition merchant (in_stock payment_checker : string -> bool) :=
|
||||
??request_product(product : string);
|
||||
if in_stock product then
|
||||
!!in_stock_or_not(true);
|
||||
??send_payment_info(payment_info : string);
|
||||
if payment_checker payment_info then
|
||||
!!payment_success(true);
|
||||
??add_review(_ : (string * string)%type);
|
||||
Done
|
||||
else
|
||||
!!payment_success(false);
|
||||
Done
|
||||
else
|
||||
!!in_stock_or_not(false);
|
||||
Done.
|
||||
|
||||
Definition online_store_type :=
|
||||
(!!!request_product(_ : string);
|
||||
!!!in_stock_or_not(worked : bool);
|
||||
if worked then
|
||||
!!!send_payment_info(_ : string);
|
||||
!!!payment_success(worked_again : bool);
|
||||
if worked_again then
|
||||
!!!add_review(_ : (string * string)%type);
|
||||
TDone
|
||||
else
|
||||
TDone
|
||||
else
|
||||
TDone)%st.
|
||||
|
||||
Definition online_store_channels (ch : channel) :=
|
||||
if ch ==n request_product then
|
||||
{| Sender := Customer;
|
||||
Receiver := Merchant |}
|
||||
else if ch ==n send_payment_info then
|
||||
{| Sender := Customer;
|
||||
Receiver := Merchant |}
|
||||
else if ch ==n add_review then
|
||||
{| Sender := Customer;
|
||||
Receiver := Merchant |}
|
||||
else
|
||||
{| Sender := Merchant;
|
||||
Receiver := Customer |}.
|
||||
|
||||
Ltac side :=
|
||||
match goal with
|
||||
| [ |- ?E = {| Sender := _; Receiver := _ |} ] =>
|
||||
let E' := eval hnf in E in change E with E';
|
||||
repeat match goal with
|
||||
| [ |- context[if ?E then _ else _] ] => cases E; try equality
|
||||
end;
|
||||
try equality;
|
||||
repeat match goal with
|
||||
| [ H : NoDup _ |- _ ] => invert H
|
||||
end; simplify; equality
|
||||
| [ |- _ <> _ ] => equality
|
||||
end.
|
||||
|
||||
Ltac hasty := simplify; repeat match goal with
|
||||
| [ |- typed_multistate _ _ _ _ ] => econstructor; simplify
|
||||
| [ |- hasty _ _ _ _ _ ] =>
|
||||
apply HtDone
|
||||
|| (eapply HtSend; [ side | side | ])
|
||||
|| (eapply HtRecv; [ constructor | side | side | simplify ])
|
||||
|| (eapply HtSkip; [ constructor | side | side | side | ])
|
||||
| [ |- hasty _ _ _ _ (match ?E with _ => _ end) ] => cases E
|
||||
| [ |- hasty _ _ _ (match ?E with _ => _ end) _ ] => cases E
|
||||
end.
|
||||
|
||||
Example online_store_no_deadlock : forall product payment_info in_stock payment_checker,
|
||||
NoDup [request_product; in_stock_or_not; send_payment_info; payment_success; add_review]
|
||||
-> invariantFor (trsys_of (customer product payment_info
|
||||
|| (merchant in_stock payment_checker
|
||||
|| Done)))
|
||||
(fun pr => inert pr
|
||||
\/ exists pr', lstep pr Silent pr').
|
||||
Proof.
|
||||
simplify.
|
||||
eapply no_deadlock with (t := online_store_type)
|
||||
(all_parties := [Customer; Merchant])
|
||||
(channels := online_store_channels);
|
||||
simplify.
|
||||
|
||||
repeat constructor; simplify; equality.
|
||||
|
||||
cases p; auto.
|
||||
|
||||
hasty; constructor.
|
||||
Qed.
|
||||
End online_store.
|
||||
|
||||
End Multiparty.
|
||||
|
|
Loading…
Reference in a new issue