mirror of
https://github.com/achlipala/frap.git
synced 2025-01-05 23:54:14 +00:00
SharedMemory: first optimization
This commit is contained in:
parent
f37e9ba34d
commit
a8a8ff0bc6
2 changed files with 432 additions and 7 deletions
|
@ -14,6 +14,14 @@ Section trc.
|
|||
|
||||
Hint Constructors trc.
|
||||
|
||||
Theorem trc_one : forall x y, R x y
|
||||
-> trc x y.
|
||||
Proof.
|
||||
eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve trc_one.
|
||||
|
||||
Theorem trc_trans : forall x y, trc x y
|
||||
-> forall z, trc y z
|
||||
-> trc x z.
|
||||
|
|
431
SharedMemory.v
431
SharedMemory.v
|
@ -90,13 +90,25 @@ Example two_increments_thread :=
|
|||
_ <- Write 0 (n + 1);
|
||||
Unlock 0.
|
||||
|
||||
Example two_increments := two_increments_thread || two_increments_thread.
|
||||
Example two_increments :=
|
||||
_ <- (two_increments_thread || two_increments_thread);
|
||||
n <- Read 0;
|
||||
if n ==n 2 then
|
||||
Return 0
|
||||
else
|
||||
Fail.
|
||||
|
||||
Fixpoint notAboutToFail (c : cmd) : Prop :=
|
||||
match c with
|
||||
| Fail => False
|
||||
| Bind c1 _ => notAboutToFail c1
|
||||
| _ => True
|
||||
end.
|
||||
|
||||
Theorem two_increments_ok :
|
||||
invariantFor (trsys_of $0 {} two_increments)
|
||||
(fun p => let '(h, l, c) := p in
|
||||
c = Return 0
|
||||
-> h $! 0 = 2).
|
||||
(fun p => let '(_, _, c) := p in
|
||||
notAboutToFail c).
|
||||
Proof.
|
||||
unfold two_increments, two_increments_thread.
|
||||
simplify.
|
||||
|
@ -118,10 +130,415 @@ Proof.
|
|||
model_check_step.
|
||||
model_check_step.
|
||||
model_check_step.
|
||||
model_check_step.
|
||||
model_check_step.
|
||||
model_check_step.
|
||||
model_check_done.
|
||||
|
||||
simplify.
|
||||
propositional; subst; try equality.
|
||||
simplify.
|
||||
reflexivity.
|
||||
propositional; subst; simplify; propositional.
|
||||
Qed.
|
||||
|
||||
|
||||
(** * Optimization #1: always run all purely local actions first. *)
|
||||
|
||||
Fixpoint runLocal (c : cmd) : cmd :=
|
||||
match c with
|
||||
| Return _ => c
|
||||
| Bind c1 c2 =>
|
||||
match runLocal c1 with
|
||||
| Return v => runLocal (c2 v)
|
||||
| c1' => Bind c1' c2
|
||||
end
|
||||
| Read _ => c
|
||||
| Write _ _ => c
|
||||
| Fail => c
|
||||
| Par c1 c2 =>
|
||||
match runLocal c1, runLocal c2 with
|
||||
| Return 0, Return 0 => Return 0
|
||||
| c1', c2' => Par c1' c2'
|
||||
end
|
||||
| Lock _ => c
|
||||
| Unlock _ => c
|
||||
end.
|
||||
|
||||
Inductive stepL : heap * locks * cmd -> heap * locks * cmd -> Prop :=
|
||||
| StepL : forall h l c h' l' c',
|
||||
step (h, l, c) (h', l', c')
|
||||
-> stepL (h, l, c) (h', l', runLocal c').
|
||||
|
||||
Definition trsys_ofL (h : heap) (l : locks) (c : cmd) := {|
|
||||
Initial := {(h, l, runLocal c)};
|
||||
Step := stepL
|
||||
|}.
|
||||
|
||||
Hint Constructors step stepL.
|
||||
|
||||
Lemma run_Return : forall h l r h' l' c,
|
||||
step^* (h, l, Return r) (h', l', c)
|
||||
-> h' = h /\ l' = l /\ c = Return r.
|
||||
Proof.
|
||||
induct 1; eauto.
|
||||
invert H.
|
||||
Qed.
|
||||
|
||||
Lemma run_Bind : forall h l c1 c2 h' l' c',
|
||||
step^* (h, l, Bind c1 c2) (h', l', c')
|
||||
-> (exists c1', step^* (h, l, c1) (h', l', c1')
|
||||
/\ c' = Bind c1' c2)
|
||||
\/ (exists h'' l'' r, step^* (h, l, c1) (h'', l'', Return r)
|
||||
/\ step^* (h'', l'', c2 r) (h', l', c')).
|
||||
Proof.
|
||||
induct 1; eauto.
|
||||
invert H; eauto 10.
|
||||
|
||||
Ltac inst H :=
|
||||
repeat match type of H with
|
||||
| _ = _ -> _ => specialize (H eq_refl)
|
||||
| forall x : ?T, _ =>
|
||||
let y := fresh in evar (y : T); let y' := eval unfold y in y in
|
||||
specialize (H y'); clear y
|
||||
end.
|
||||
|
||||
inst IHtrc.
|
||||
first_order; eauto 10.
|
||||
Qed.
|
||||
|
||||
Lemma StepBindRecur_star : forall c1 c1' c2 h h' l l',
|
||||
step^* (h, l, c1) (h', l', c1')
|
||||
-> step^* (h, l, Bind c1 c2) (h', l', Bind c1' c2).
|
||||
Proof.
|
||||
induct 1; eauto.
|
||||
cases y.
|
||||
cases p.
|
||||
eauto.
|
||||
Qed.
|
||||
|
||||
Lemma StepParRecur1_star : forall h l c1 c2 h' l' c1',
|
||||
step^* (h, l, c1) (h', l', c1')
|
||||
-> step^* (h, l, Par c1 c2) (h', l', Par c1' c2).
|
||||
Proof.
|
||||
induct 1; eauto.
|
||||
cases y.
|
||||
cases p.
|
||||
eauto.
|
||||
Qed.
|
||||
|
||||
Lemma StepParRecur2_star : forall h l c1 c2 h' l' c2',
|
||||
step^* (h, l, c2) (h', l', c2')
|
||||
-> step^* (h, l, Par c1 c2) (h', l', Par c1 c2').
|
||||
Proof.
|
||||
induct 1; eauto.
|
||||
cases y.
|
||||
cases p.
|
||||
eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve StepBindRecur_star StepParRecur1_star StepParRecur2_star.
|
||||
|
||||
Lemma runLocal_idem : forall c, runLocal (runLocal c) = runLocal c.
|
||||
Proof.
|
||||
induct c; simplify; eauto.
|
||||
cases (runLocal c); simplify; eauto.
|
||||
rewrite IHc; auto.
|
||||
rewrite IHc; auto.
|
||||
cases (runLocal c1); simplify; eauto.
|
||||
cases (runLocal c2); simplify; eauto.
|
||||
cases r; eauto.
|
||||
cases r0; eauto.
|
||||
cases r; simplify; eauto.
|
||||
rewrite IHc2; auto.
|
||||
rewrite IHc2; auto.
|
||||
cases r; simplify; eauto.
|
||||
cases r; simplify; eauto.
|
||||
cases r; simplify; eauto.
|
||||
cases r; simplify; eauto.
|
||||
rewrite IHc2; eauto.
|
||||
rewrite IHc2; eauto.
|
||||
cases r; simplify; eauto.
|
||||
cases r; simplify; eauto.
|
||||
rewrite IHc2; eauto.
|
||||
rewrite IHc1; eauto.
|
||||
equality.
|
||||
equality.
|
||||
equality.
|
||||
rewrite IHc1; eauto.
|
||||
equality.
|
||||
equality.
|
||||
equality.
|
||||
Qed.
|
||||
|
||||
Lemma step_runLocal : forall h l c h' l' c',
|
||||
step (h, l, c) (h', l', c')
|
||||
-> (runLocal c = runLocal c' /\ h = h' /\ l = l')
|
||||
\/ exists c'', step (h, l, runLocal c) (h', l', c'')
|
||||
/\ runLocal c'' = runLocal c'.
|
||||
Proof.
|
||||
induct 1; simplify; first_order; eauto.
|
||||
|
||||
rewrite H0; equality.
|
||||
|
||||
cases (runLocal c1).
|
||||
invert H0.
|
||||
rewrite <- H1; eauto.
|
||||
rewrite <- H1; eauto.
|
||||
rewrite <- H1; eauto.
|
||||
rewrite <- H1; eauto.
|
||||
rewrite <- H1; eauto.
|
||||
rewrite <- H1; eauto.
|
||||
rewrite <- H1; eauto.
|
||||
|
||||
rewrite H0; equality.
|
||||
|
||||
cases (runLocal c1).
|
||||
invert H0.
|
||||
rewrite <- H1.
|
||||
right.
|
||||
eexists.
|
||||
propositional.
|
||||
eauto.
|
||||
simplify.
|
||||
rewrite runLocal_idem.
|
||||
equality.
|
||||
rewrite <- H1.
|
||||
right.
|
||||
eexists.
|
||||
propositional.
|
||||
eauto.
|
||||
simplify.
|
||||
rewrite runLocal_idem.
|
||||
equality.
|
||||
rewrite <- H1.
|
||||
right.
|
||||
eexists.
|
||||
propositional.
|
||||
eauto.
|
||||
simplify.
|
||||
rewrite runLocal_idem.
|
||||
equality.
|
||||
rewrite <- H1.
|
||||
right.
|
||||
eexists.
|
||||
propositional.
|
||||
eauto.
|
||||
simplify.
|
||||
rewrite runLocal_idem.
|
||||
equality.
|
||||
rewrite <- H1.
|
||||
right.
|
||||
eexists.
|
||||
propositional.
|
||||
eauto.
|
||||
simplify.
|
||||
rewrite runLocal_idem.
|
||||
equality.
|
||||
rewrite <- H1.
|
||||
right.
|
||||
eexists.
|
||||
propositional.
|
||||
eauto.
|
||||
simplify.
|
||||
rewrite runLocal_idem.
|
||||
equality.
|
||||
rewrite <- H1.
|
||||
right.
|
||||
eexists.
|
||||
propositional.
|
||||
eauto.
|
||||
simplify.
|
||||
rewrite runLocal_idem.
|
||||
equality.
|
||||
|
||||
rewrite H0; equality.
|
||||
|
||||
right.
|
||||
cases (runLocal c1).
|
||||
cases r.
|
||||
cases (runLocal c2).
|
||||
invert H0.
|
||||
eexists; propositional.
|
||||
eauto.
|
||||
simplify.
|
||||
rewrite H1; equality.
|
||||
eexists; propositional.
|
||||
eauto.
|
||||
simplify.
|
||||
rewrite H1; equality.
|
||||
eexists; propositional.
|
||||
eauto.
|
||||
simplify.
|
||||
rewrite H1; equality.
|
||||
eexists; propositional.
|
||||
eauto.
|
||||
simplify.
|
||||
rewrite H1; equality.
|
||||
eexists; propositional.
|
||||
eauto.
|
||||
simplify.
|
||||
rewrite H1; equality.
|
||||
eexists; propositional.
|
||||
eauto.
|
||||
simplify.
|
||||
rewrite H1; equality.
|
||||
eexists; propositional.
|
||||
eauto.
|
||||
simplify.
|
||||
rewrite H1; equality.
|
||||
eexists; propositional.
|
||||
eauto.
|
||||
simplify.
|
||||
rewrite H1; equality.
|
||||
eexists; propositional.
|
||||
eauto.
|
||||
|
||||
Lemma runLocal_left : forall c1 c2,
|
||||
(forall r, runLocal c1 <> Return r)
|
||||
-> runLocal (c1 || c2) = runLocal c1 || runLocal c2.
|
||||
Proof.
|
||||
simplify.
|
||||
cases (runLocal c1); eauto.
|
||||
unfold not in *.
|
||||
exfalso; eauto.
|
||||
Qed.
|
||||
|
||||
rewrite runLocal_left.
|
||||
rewrite <- Heq.
|
||||
rewrite runLocal_idem.
|
||||
equality.
|
||||
rewrite <- Heq.
|
||||
rewrite runLocal_idem.
|
||||
rewrite Heq.
|
||||
equality.
|
||||
|
||||
eexists; propositional.
|
||||
eauto.
|
||||
rewrite runLocal_left.
|
||||
rewrite <- Heq.
|
||||
rewrite runLocal_idem.
|
||||
equality.
|
||||
rewrite <- Heq.
|
||||
rewrite runLocal_idem.
|
||||
rewrite Heq.
|
||||
equality.
|
||||
|
||||
eexists; propositional.
|
||||
eauto.
|
||||
rewrite runLocal_left.
|
||||
rewrite <- Heq.
|
||||
rewrite runLocal_idem.
|
||||
equality.
|
||||
rewrite <- Heq.
|
||||
rewrite runLocal_idem.
|
||||
rewrite Heq.
|
||||
equality.
|
||||
|
||||
eexists; propositional.
|
||||
eauto.
|
||||
rewrite runLocal_left.
|
||||
rewrite <- Heq.
|
||||
rewrite runLocal_idem.
|
||||
equality.
|
||||
rewrite <- Heq.
|
||||
rewrite runLocal_idem.
|
||||
rewrite Heq.
|
||||
equality.
|
||||
|
||||
eexists; propositional.
|
||||
eauto.
|
||||
rewrite runLocal_left.
|
||||
rewrite <- Heq.
|
||||
rewrite runLocal_idem.
|
||||
equality.
|
||||
rewrite <- Heq.
|
||||
rewrite runLocal_idem.
|
||||
rewrite Heq.
|
||||
equality.
|
||||
|
||||
eexists; propositional.
|
||||
eauto.
|
||||
rewrite runLocal_left.
|
||||
rewrite <- Heq.
|
||||
rewrite runLocal_idem.
|
||||
equality.
|
||||
rewrite <- Heq.
|
||||
rewrite runLocal_idem.
|
||||
rewrite Heq.
|
||||
equality.
|
||||
|
||||
eexists; propositional.
|
||||
eauto.
|
||||
rewrite runLocal_left.
|
||||
rewrite <- Heq.
|
||||
rewrite runLocal_idem.
|
||||
equality.
|
||||
rewrite <- Heq.
|
||||
rewrite runLocal_idem.
|
||||
rewrite Heq.
|
||||
equality.
|
||||
Qed.
|
||||
|
||||
Lemma step_stepL' : forall h l c h' l' c',
|
||||
step^* (h, l, c) (h', l', c')
|
||||
-> stepL^* (h, l, runLocal c) (h', l', runLocal c').
|
||||
Proof.
|
||||
induct 1; simplify; eauto.
|
||||
cases y.
|
||||
cases p.
|
||||
inst IHtrc.
|
||||
apply step_runLocal in H; first_order; subst.
|
||||
rewrite H; eauto.
|
||||
econstructor.
|
||||
econstructor.
|
||||
eauto.
|
||||
equality.
|
||||
Qed.
|
||||
|
||||
Theorem notAboutToFail_runLocal : forall c,
|
||||
notAboutToFail (runLocal c)
|
||||
-> notAboutToFail c.
|
||||
Proof.
|
||||
induct c; simplify; auto.
|
||||
cases (runLocal c); simplify; auto.
|
||||
Qed.
|
||||
|
||||
Theorem step_stepL : forall h l c ,
|
||||
invariantFor (trsys_ofL h l c) (fun p => let '(_, _, c) := p in
|
||||
notAboutToFail c)
|
||||
-> invariantFor (trsys_of h l c) (fun p =>
|
||||
let '(_, _, c) := p in
|
||||
notAboutToFail c).
|
||||
Proof.
|
||||
unfold invariantFor; simplify.
|
||||
propositional; subst.
|
||||
|
||||
cases s'.
|
||||
cases p.
|
||||
apply step_stepL' in H1.
|
||||
apply H in H1; eauto using notAboutToFail_runLocal.
|
||||
Qed.
|
||||
|
||||
Theorem two_increments_ok_again :
|
||||
invariantFor (trsys_of $0 {} two_increments)
|
||||
(fun p => let '(_, _, c) := p in
|
||||
notAboutToFail c).
|
||||
Proof.
|
||||
apply step_stepL.
|
||||
unfold two_increments, two_increments_thread.
|
||||
simplify.
|
||||
eapply invariant_weaken.
|
||||
apply multiStepClosure_ok; simplify.
|
||||
|
||||
model_check_step.
|
||||
model_check_step.
|
||||
model_check_step.
|
||||
model_check_step.
|
||||
model_check_step.
|
||||
model_check_step.
|
||||
model_check_step.
|
||||
model_check_step.
|
||||
model_check_step.
|
||||
model_check_done.
|
||||
|
||||
simplify.
|
||||
propositional; subst; simplify; propositional.
|
||||
Qed.
|
||||
|
|
Loading…
Reference in a new issue