mirror of
https://github.com/achlipala/frap.git
synced 2025-01-09 09:34:14 +00:00
Merge pull request #44 from samuelgruetter/message_passing_fixes
Message passing fixes
This commit is contained in:
commit
a8dd970c96
1 changed files with 60 additions and 63 deletions
|
@ -36,8 +36,8 @@ Inductive proc :=
|
|||
(* Act like [pr], but prevent interaction with other processes through channel
|
||||
* [ch]. We effectively force [ch] to be *private*. *)
|
||||
|
||||
| Send (ch : channel) {A : Set} (v : A) (k : proc)
|
||||
| Recv (ch : channel) {A : Set} (k : A -> proc)
|
||||
| Send (ch : channel) {A : Type} (v : A) (k : proc)
|
||||
| Recv (ch : channel) {A : Type} (k : A -> proc)
|
||||
(* When one process runs a [Send] and the other a [Recv] on the same channel
|
||||
* simultaneously, the [Send] moves on to its [k], while the [Recv] moves on to
|
||||
* its [k v], for [v] the value that was sent. *)
|
||||
|
@ -106,7 +106,7 @@ Definition tester (metaInput input output metaOutput : channel) : proc :=
|
|||
|
||||
Record message := {
|
||||
Channel : channel;
|
||||
TypeOf : Set;
|
||||
TypeOf : Type;
|
||||
Value : TypeOf
|
||||
}.
|
||||
|
||||
|
@ -118,9 +118,6 @@ Inductive label :=
|
|||
| Silent
|
||||
| Action (a : action).
|
||||
|
||||
(* This command lets us use [action]s implicitly as [label]s. *)
|
||||
Coercion Action : action >-> label.
|
||||
|
||||
(* This predicate captures when a label doesn't use a channel. *)
|
||||
Definition notUse (ch : channel) (l : label) :=
|
||||
match l with
|
||||
|
@ -136,13 +133,13 @@ Inductive lstep : proc -> label -> proc -> Prop :=
|
|||
* the value being received is "pulled out of thin air"! However, it gets
|
||||
* determined concretely by comparing against a matching [Send], in a rule that
|
||||
* we get to shortly. *)
|
||||
| LStepSend : forall ch {A : Set} (v : A) k,
|
||||
| LStepSend : forall ch {A : Type} (v : A) k,
|
||||
lstep (Send ch v k)
|
||||
(Output {| Channel := ch; Value := v |})
|
||||
(Action (Output {| Channel := ch; Value := v |}))
|
||||
k
|
||||
| LStepRecv : forall ch {A : Set} (k : A -> _) v,
|
||||
| LStepRecv : forall ch {A : Type} (k : A -> _) v,
|
||||
lstep (Recv ch k)
|
||||
(Input {| Channel := ch; Value := v |})
|
||||
(Action (Input {| Channel := ch; Value := v |}))
|
||||
(k v)
|
||||
|
||||
(* A [Dup] always has the option of replicating itself further. *)
|
||||
|
@ -177,13 +174,13 @@ Inductive lstep : proc -> label -> proc -> Prop :=
|
|||
* value from the same channel, the two sides *rendezvous*, and the value is
|
||||
* exchanged. This is the only mechanism to let two transitions happen at
|
||||
* once. *)
|
||||
| LStepRendezvousLeft : forall pr1 ch {A : Set} (v : A) pr1' pr2 pr2',
|
||||
lstep pr1 (Input {| Channel := ch; Value := v |}) pr1'
|
||||
-> lstep pr2 (Output {| Channel := ch; Value := v |}) pr2'
|
||||
| LStepRendezvousLeft : forall pr1 ch {A : Type} (v : A) pr1' pr2 pr2',
|
||||
lstep pr1 (Action (Input {| Channel := ch; Value := v |})) pr1'
|
||||
-> lstep pr2 (Action (Output {| Channel := ch; Value := v |})) pr2'
|
||||
-> lstep (Par pr1 pr2) Silent (Par pr1' pr2')
|
||||
| LStepRendezvousRight : forall pr1 ch {A : Set} (v : A) pr1' pr2 pr2',
|
||||
lstep pr1 (Output {| Channel := ch; Value := v |}) pr1'
|
||||
-> lstep pr2 (Input {| Channel := ch; Value := v |}) pr2'
|
||||
| LStepRendezvousRight : forall pr1 ch {A : Type} (v : A) pr1' pr2 pr2',
|
||||
lstep pr1 (Action (Output {| Channel := ch; Value := v |})) pr1'
|
||||
-> lstep pr2 (Action (Input {| Channel := ch; Value := v |})) pr2'
|
||||
-> lstep (Par pr1 pr2) Silent (Par pr1' pr2').
|
||||
|
||||
(* Here's a shorthand for silent steps. *)
|
||||
|
@ -244,7 +241,7 @@ Inductive couldGenerate : proc -> list action -> Prop :=
|
|||
(* Skip ahead to [refines_couldGenerate] to see the top-level connection from
|
||||
* [refines]. *)
|
||||
|
||||
Hint Constructors couldGenerate.
|
||||
Hint Constructors couldGenerate : core.
|
||||
|
||||
Lemma lstepSilent_couldGenerate : forall pr1 pr2,
|
||||
lstepSilent^* pr1 pr2
|
||||
|
@ -254,7 +251,7 @@ Proof.
|
|||
induct 1; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve lstepSilent_couldGenerate.
|
||||
Hint Resolve lstepSilent_couldGenerate : core.
|
||||
|
||||
Lemma simulates_couldGenerate' : forall (R : proc -> proc -> Prop),
|
||||
(forall pr1 pr2, R pr1 pr2
|
||||
|
@ -295,8 +292,8 @@ Qed.
|
|||
(* Well, you're used to unexplained automation tactics by now, so here are some
|
||||
* more. ;-) *)
|
||||
|
||||
Lemma invert_Recv : forall ch (A : Set) (k : A -> proc) (x : A) pr,
|
||||
lstep (Recv ch k) (Input {| Channel := ch; Value := x |}) pr
|
||||
Lemma invert_Recv : forall ch (A : Type) (k : A -> proc) (x : A) pr,
|
||||
lstep (Recv ch k) (Action (Input {| Channel := ch; Value := x |})) pr
|
||||
-> pr = k x.
|
||||
Proof.
|
||||
invert 1; auto.
|
||||
|
@ -308,8 +305,8 @@ Ltac inverter :=
|
|||
| [ H : lstepSilent _ _ |- _ ] => invert H
|
||||
end.
|
||||
|
||||
Hint Constructors lstep.
|
||||
Hint Unfold lstepSilent.
|
||||
Hint Constructors lstep : core.
|
||||
Hint Unfold lstepSilent : core.
|
||||
|
||||
Ltac lists' :=
|
||||
repeat match goal with
|
||||
|
@ -319,7 +316,7 @@ Ltac lists' :=
|
|||
|
||||
Ltac lists := solve [ lists' ].
|
||||
|
||||
Hint Extern 1 (NoDup _) => lists.
|
||||
Hint Extern 1 (NoDup _) => lists : core.
|
||||
|
||||
|
||||
(** * Examples *)
|
||||
|
@ -364,7 +361,7 @@ Inductive R_add2 : proc -> proc -> Prop :=
|
|||
(Block intermediate; Done || Done)
|
||||
Done.
|
||||
|
||||
Hint Constructors R_add2.
|
||||
Hint Constructors R_add2 : core.
|
||||
|
||||
Theorem add2_once_refines_addN : forall input output,
|
||||
input <> output
|
||||
|
@ -465,9 +462,9 @@ Inductive RDup (R : proc -> proc -> Prop) : proc -> proc -> Prop :=
|
|||
-> RDup R pr2 pr2'
|
||||
-> RDup R (Par pr1 pr2) (Par pr1' pr2').
|
||||
|
||||
Hint Constructors RDup.
|
||||
Hint Constructors RDup : core.
|
||||
|
||||
Hint Unfold lstepSilent.
|
||||
Hint Unfold lstepSilent : core.
|
||||
|
||||
Lemma lstepSilent_Par1 : forall pr1 pr1' pr2,
|
||||
lstepSilent^* pr1 pr1'
|
||||
|
@ -483,7 +480,7 @@ Proof.
|
|||
induct 1; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve lstepSilent_Par1 lstepSilent_Par2.
|
||||
Hint Resolve lstepSilent_Par1 lstepSilent_Par2 : core.
|
||||
|
||||
Lemma refines_Dup_Action : forall R : _ -> _ -> Prop,
|
||||
(forall pr1 pr2, R pr1 pr2
|
||||
|
@ -596,7 +593,7 @@ Inductive RPar (R1 R2 : proc -> proc -> Prop) : proc -> proc -> Prop :=
|
|||
-> R2 pr2 pr2'
|
||||
-> RPar R1 R2 (pr1 || pr2) (pr1' || pr2').
|
||||
|
||||
Hint Constructors RPar.
|
||||
Hint Constructors RPar : core.
|
||||
|
||||
Lemma refines_Par_Action : forall R1 R2 : _ -> _ -> Prop,
|
||||
(forall pr1 pr2, R1 pr1 pr2
|
||||
|
@ -709,8 +706,8 @@ Inductive RBlock (R : proc -> proc -> Prop) : proc -> proc -> Prop :=
|
|||
R pr1 pr2
|
||||
-> RBlock R (Block ch; pr1) (Block ch; pr2).
|
||||
|
||||
Hint Constructors RBlock.
|
||||
Hint Unfold notUse.
|
||||
Hint Constructors RBlock : core.
|
||||
Hint Unfold notUse : core.
|
||||
|
||||
Lemma lstepSilent_Block : forall ch pr1 pr2,
|
||||
lstepSilent^* pr1 pr2
|
||||
|
@ -719,7 +716,7 @@ Proof.
|
|||
induct 1; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve lstepSilent_Block.
|
||||
Hint Resolve lstepSilent_Block : core.
|
||||
|
||||
Theorem refines_Block : forall pr1 pr2 ch,
|
||||
pr1 <| pr2
|
||||
|
@ -746,7 +743,7 @@ Inductive RBlock2 : proc -> proc -> Prop :=
|
|||
| RBlock2_1 : forall ch1 ch2 pr,
|
||||
RBlock2 (Block ch1; Block ch2; pr) (Block ch2; Block ch1; pr).
|
||||
|
||||
Hint Constructors RBlock2.
|
||||
Hint Constructors RBlock2 : core.
|
||||
|
||||
Theorem refines_Block2 : forall ch1 ch2 pr,
|
||||
Block ch1; Block ch2; pr <| Block ch2; Block ch1; pr.
|
||||
|
@ -768,11 +765,11 @@ Qed.
|
|||
(* This predicate is handy for side conditions, to enforce that a process never
|
||||
* uses a particular channel for anything. *)
|
||||
Inductive neverUses (ch : channel) : proc -> Prop :=
|
||||
| NuRecv : forall ch' (A : Set) (k : A -> _),
|
||||
| NuRecv : forall ch' (A : Type) (k : A -> _),
|
||||
ch' <> ch
|
||||
-> (forall v, neverUses ch (k v))
|
||||
-> neverUses ch (Recv ch' k)
|
||||
| NuSend : forall ch' (A : Set) (v : A) k,
|
||||
| NuSend : forall ch' (A : Type) (v : A) k,
|
||||
ch' <> ch
|
||||
-> neverUses ch k
|
||||
-> neverUses ch (Send ch' v k)
|
||||
|
@ -786,7 +783,7 @@ Inductive neverUses (ch : channel) : proc -> Prop :=
|
|||
| NuDone :
|
||||
neverUses ch Done.
|
||||
|
||||
Hint Constructors neverUses.
|
||||
Hint Constructors neverUses : core.
|
||||
|
||||
Lemma neverUses_step : forall ch pr1,
|
||||
neverUses ch pr1
|
||||
|
@ -796,14 +793,14 @@ Proof.
|
|||
induct 1; invert 1; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve neverUses_step.
|
||||
Hint Resolve neverUses_step : core.
|
||||
|
||||
Inductive RBlockS : proc -> proc -> Prop :=
|
||||
| RBlockS1 : forall ch pr1 pr2,
|
||||
neverUses ch pr2
|
||||
-> RBlockS (Block ch; pr1 || pr2) ((Block ch; pr1) || pr2).
|
||||
|
||||
Hint Constructors RBlockS.
|
||||
Hint Constructors RBlockS : core.
|
||||
|
||||
Lemma neverUses_notUse : forall ch pr l,
|
||||
neverUses ch pr
|
||||
|
@ -814,20 +811,20 @@ Proof.
|
|||
Qed.
|
||||
|
||||
Lemma notUse_Input_Output : forall ch r,
|
||||
notUse ch (Input r)
|
||||
-> notUse ch (Output r).
|
||||
notUse ch (Action (Input r))
|
||||
-> notUse ch (Action (Output r)).
|
||||
Proof.
|
||||
simplify; auto.
|
||||
Qed.
|
||||
|
||||
Lemma notUse_Output_Input : forall ch r,
|
||||
notUse ch (Output r)
|
||||
-> notUse ch (Input r).
|
||||
notUse ch (Action (Output r))
|
||||
-> notUse ch (Action (Input r)).
|
||||
Proof.
|
||||
simplify; auto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve neverUses_notUse.
|
||||
Hint Resolve neverUses_notUse : core.
|
||||
|
||||
Theorem refines_BlockS : forall ch pr1 pr2,
|
||||
neverUses ch pr2
|
||||
|
@ -1011,7 +1008,7 @@ Inductive RTree (t : tree) (input output : channel) : proc -> proc -> Prop :=
|
|||
(Block output'; threads || Done)
|
||||
Done.
|
||||
|
||||
Hint Constructors TreeThreads RTree.
|
||||
Hint Constructors TreeThreads RTree : core.
|
||||
|
||||
Lemma TreeThreads_actionIs : forall ch maySend pr,
|
||||
TreeThreads ch maySend pr
|
||||
|
@ -1058,7 +1055,7 @@ Proof.
|
|||
induct 1; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve TreeThreads_silent TreeThreads_maySend TreeThreads_action TreeThreads_weaken.
|
||||
Hint Resolve TreeThreads_silent TreeThreads_maySend TreeThreads_action TreeThreads_weaken : core.
|
||||
|
||||
Lemma TreeThreads_inTree_par' : forall n ch t,
|
||||
TreeThreads ch (mem n t) (inTree_par' n t ch).
|
||||
|
@ -1069,7 +1066,7 @@ Proof.
|
|||
cases (mem n t2); simplify; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve TreeThreads_inTree_par'.
|
||||
Hint Resolve TreeThreads_inTree_par' : core.
|
||||
|
||||
(* Finally, the main theorem: *)
|
||||
Theorem refines_inTree_par : forall t input output,
|
||||
|
@ -1175,7 +1172,7 @@ Inductive manyOfAndOneOf (common rare : proc) : proc -> Prop :=
|
|||
-> manyOfAndOneOf common rare pr2
|
||||
-> manyOfAndOneOf common rare (pr1 || pr2).
|
||||
|
||||
Inductive Rhandoff (ch : channel) (A : Set) (v : A) (k : A -> proc) : proc -> proc -> Prop :=
|
||||
Inductive Rhandoff (ch : channel) (A : Type) (v : A) (k : A -> proc) : proc -> proc -> Prop :=
|
||||
| Rhandoff1 : forall recvs,
|
||||
neverUses ch (k v)
|
||||
-> manyOf (??ch(x : A); k x) recvs
|
||||
|
@ -1189,12 +1186,12 @@ Inductive Rhandoff (ch : channel) (A : Set) (v : A) (k : A -> proc) : proc -> pr
|
|||
-> manyOf (??ch(x : A); k x) recvs
|
||||
-> Rhandoff ch v k (Block ch; Done || recvs) rest.
|
||||
|
||||
Hint Constructors manyOf manyOfAndOneOf Rhandoff.
|
||||
Hint Constructors manyOf manyOfAndOneOf Rhandoff : core.
|
||||
|
||||
Lemma manyOf_action : forall this pr,
|
||||
manyOf this pr
|
||||
-> forall a pr', lstep pr (Action a) pr'
|
||||
-> exists this', lstep this a this'.
|
||||
-> exists this', lstep this (Action a) this'.
|
||||
Proof.
|
||||
induct 1; simplify; eauto.
|
||||
invert H.
|
||||
|
@ -1202,7 +1199,7 @@ Proof.
|
|||
Qed.
|
||||
|
||||
Lemma manyOf_silent : forall this, (forall this', lstepSilent this this' -> False)
|
||||
-> (forall r this', lstep this (Output r) this' -> False)
|
||||
-> (forall r this', lstep this (Action (Output r)) this' -> False)
|
||||
-> forall pr, manyOf this pr
|
||||
-> forall pr', lstep pr Silent pr'
|
||||
-> manyOf this pr'.
|
||||
|
@ -1215,9 +1212,9 @@ Proof.
|
|||
eapply manyOf_action in H4; eauto; first_order; exfalso; eauto.
|
||||
Qed.
|
||||
|
||||
Lemma manyOf_rendezvous : forall ch (A : Set) (v : A) (k : A -> _) pr,
|
||||
Lemma manyOf_rendezvous : forall ch (A : Type) (v : A) (k : A -> _) pr,
|
||||
manyOf (Recv ch k) pr
|
||||
-> forall pr', lstep pr (Input {| Channel := ch; Value := v |}) pr'
|
||||
-> forall pr', lstep pr (Action (Input {| Channel := ch; Value := v |})) pr'
|
||||
-> manyOfAndOneOf (Recv ch k) (k v) pr'.
|
||||
Proof.
|
||||
induct 1; simplify; eauto.
|
||||
|
@ -1229,12 +1226,12 @@ Proof.
|
|||
invert H1; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve manyOf_silent manyOf_rendezvous.
|
||||
Hint Resolve manyOf_silent manyOf_rendezvous : core.
|
||||
|
||||
Lemma manyOfAndOneOf_output : forall ch (A : Set) (k : A -> _) rest ch0 (A0 : Set) (v0 : A0) pr,
|
||||
Lemma manyOfAndOneOf_output : forall ch (A : Type) (k : A -> _) rest ch0 (A0 : Type) (v0 : A0) pr,
|
||||
manyOfAndOneOf (Recv ch k) rest pr
|
||||
-> forall pr', lstep pr (Output {| Channel := ch0; Value := v0 |}) pr'
|
||||
-> exists rest', lstep rest (Output {| Channel := ch0; Value := v0 |}) rest'
|
||||
-> forall pr', lstep pr (Action (Output {| Channel := ch0; Value := v0 |})) pr'
|
||||
-> exists rest', lstep rest (Action (Output {| Channel := ch0; Value := v0 |})) rest'
|
||||
/\ manyOfAndOneOf (Recv ch k) rest' pr'.
|
||||
Proof.
|
||||
induct 1; simplify; eauto.
|
||||
|
@ -1263,11 +1260,11 @@ Proof.
|
|||
induct 1; simplify; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve manyOf_manyOfAndOneOf.
|
||||
Hint Resolve manyOf_manyOfAndOneOf : core.
|
||||
|
||||
Lemma no_rendezvous : forall ch0 (A0 : Set) (v : A0) pr1 rest (k : A0 -> _),
|
||||
Lemma no_rendezvous : forall ch0 (A0 : Type) (v : A0) pr1 rest (k : A0 -> _),
|
||||
manyOfAndOneOf (??ch0 (x : _); k x) rest pr1
|
||||
-> forall pr1', lstep pr1 (Output {| Channel := ch0; TypeOf := A0; Value := v |}) pr1'
|
||||
-> forall pr1', lstep pr1 (Action (Output {| Channel := ch0; TypeOf := A0; Value := v |})) pr1'
|
||||
-> neverUses ch0 rest
|
||||
-> False.
|
||||
Proof.
|
||||
|
@ -1300,7 +1297,7 @@ Proof.
|
|||
eauto.
|
||||
Qed.
|
||||
|
||||
Lemma manyOfAndOneOf_silent : forall ch (A : Set) (k : A -> _) rest pr,
|
||||
Lemma manyOfAndOneOf_silent : forall ch (A : Type) (k : A -> _) rest pr,
|
||||
manyOfAndOneOf (Recv ch k) rest pr
|
||||
-> neverUses ch rest
|
||||
-> forall pr', lstep pr Silent pr'
|
||||
|
@ -1338,14 +1335,14 @@ Proof.
|
|||
invert H.
|
||||
Qed.
|
||||
|
||||
Hint Resolve manyOfAndOneOf_silent manyOf_rendezvous.
|
||||
Hint Resolve manyOfAndOneOf_silent manyOf_rendezvous : core.
|
||||
|
||||
Lemma manyOfAndOneOf_action : forall ch (A : Set) (k : A -> _) rest pr,
|
||||
Lemma manyOfAndOneOf_action : forall ch (A : Type) (k : A -> _) rest pr,
|
||||
manyOfAndOneOf (Recv ch k) rest pr
|
||||
-> forall a pr', lstep pr (Action a) pr'
|
||||
-> (exists v : A, a = Input {| Channel := ch; Value := v |})
|
||||
\/ exists rest', manyOfAndOneOf (Recv ch k) rest' pr'
|
||||
/\ lstep rest a rest'.
|
||||
/\ lstep rest (Action a) rest'.
|
||||
Proof.
|
||||
induct 1; simplify; eauto.
|
||||
invert H; eauto.
|
||||
|
@ -1368,7 +1365,7 @@ Qed.
|
|||
* of each server thread has nothing more to do with the channel we are using to
|
||||
* send it requests! Otherwise, we would need to keep some [Dup] present
|
||||
* explicitly in the spec (righthand argument of [<|]). *)
|
||||
Theorem handoff : forall ch (A : Set) (v : A) k,
|
||||
Theorem handoff : forall ch (A : Type) (v : A) k,
|
||||
neverUses ch (k v)
|
||||
-> Block ch; (!!ch(v); Done) || Dup (Recv ch k)
|
||||
<| k v.
|
||||
|
|
Loading…
Reference in a new issue