Interpreters: factorial example

This commit is contained in:
Adam Chlipala 2016-02-06 22:09:37 -05:00
parent 5e842c66f7
commit ba3bb5c351
4 changed files with 175 additions and 32 deletions

4
Frap.v
View file

@ -75,3 +75,7 @@ Ltac cases E :=
end. end.
Global Opaque max min. Global Opaque max min.
Infix "==n" := eq_nat_dec (no associativity, at level 50).
Export Frap.Map.

View file

@ -6,39 +6,44 @@
Require Import Frap. Require Import Frap.
(* We begin with a return to our arithmetic language from the last chapter. *) (* We begin with a return to our arithmetic language from the last chapter,
* adding subtraction, which will come in handy later. *)
Inductive arith : Set := Inductive arith : Set :=
| Const (n : nat) | Const (n : nat)
| Var (x : var) | Var (x : var)
| Plus (e1 e2 : arith) | Plus (e1 e2 : arith)
| Minus (e1 e2 : arith)
| Times (e1 e2 : arith). | Times (e1 e2 : arith).
Example ex1 := Const 42.
Example ex2 := Plus (Const 1) (Times (Var "x") (Const 3)).
(* The above definition only explains what programs *look like*. (* The above definition only explains what programs *look like*.
* We also care about what they *mean*. * We also care about what they *mean*.
* The natural meaning of an expression is the number it evaluates to. * The natural meaning of an expression is the number it evaluates to.
* Actually, it's not quite that simple. * Actually, it's not quite that simple.
* We need to consider the meaning to be a function over a valuation * We need to consider the meaning to be a function over a valuation
* to the variables, which in turn is itself a function from variable * to the variables, which in turn is itself a finite map from variable
* names to numbers. *) * names to numbers. We use the book library's [map] type family. *)
Definition valuation := var -> nat. Definition valuation := map var nat.
Fixpoint interp (e : arith) (v : valuation) : nat := Fixpoint interp (e : arith) (v : valuation) : nat :=
match e with match e with
| Const n => n | Const n => n
| Var x => v x | Var x =>
(* Note use of infix operator to look up a key in a finite map. *)
match v $? x with
| None => 0 (* goofy default value! *)
| Some n => n
end
| Plus e1 e2 => interp e1 v + interp e2 v | Plus e1 e2 => interp e1 v + interp e2 v
| Minus e1 e2 => interp e1 v - interp e2 v
(* For anyone who's wondering: this [-] sticks at 0,
* if we would otherwise underflow. *)
| Times e1 e2 => interp e1 v * interp e2 v | Times e1 e2 => interp e1 v * interp e2 v
end. end.
(* Let's sanity-check the interpretation. *) (* Here's an example valuation. Unfortunately, we can't execute code based on
* finite maps, since, for convenience, they use uncomputable features. *)
Definition valuation0 : valuation := Definition valuation0 : valuation :=
fun x => if x ==v "x" then 17 else 23. $0 $+ ("x", 17).
Compute interp ex1 valuation0.
Compute interp ex2 valuation0.
(* Here's the silly transformation we defined last time. *) (* Here's the silly transformation we defined last time. *)
Fixpoint commuter (e : arith) : arith := Fixpoint commuter (e : arith) : arith :=
@ -46,6 +51,7 @@ Fixpoint commuter (e : arith) : arith :=
| Const _ => e | Const _ => e
| Var _ => e | Var _ => e
| Plus e1 e2 => Plus (commuter e2) (commuter e1) | Plus e1 e2 => Plus (commuter e2) (commuter e1)
| Minus e1 e2 => Minus (commuter e1) (commuter e2)
| Times e1 e2 => Times (commuter e2) (commuter e1) | Times e1 e2 => Times (commuter e2) (commuter e1)
end. end.
@ -62,6 +68,8 @@ Proof.
linear_arithmetic. linear_arithmetic.
equality.
rewrite IHe1. rewrite IHe1.
rewrite IHe2. rewrite IHe2.
ring. ring.
@ -74,27 +82,21 @@ Fixpoint substitute (inThis : arith) (replaceThis : var) (withThis : arith) : ar
| Const _ => inThis | Const _ => inThis
| Var x => if x ==v replaceThis then withThis else inThis | Var x => if x ==v replaceThis then withThis else inThis
| Plus e1 e2 => Plus (substitute e1 replaceThis withThis) (substitute e2 replaceThis withThis) | Plus e1 e2 => Plus (substitute e1 replaceThis withThis) (substitute e2 replaceThis withThis)
| Minus e1 e2 => Minus (substitute e1 replaceThis withThis) (substitute e2 replaceThis withThis)
| Times e1 e2 => Times (substitute e1 replaceThis withThis) (substitute e2 replaceThis withThis) | Times e1 e2 => Times (substitute e1 replaceThis withThis) (substitute e2 replaceThis withThis)
end. end.
(* The natural semantic correctness condition for substitution, (* Note the use of an infix operator for overriding one entry in a finite
* drawing on a helper function for adding a new mapping to a valuation *) * map. *)
Definition extend_valuation (v : valuation) (x : var) (n : nat) : valuation :=
fun y => if y ==v x then n else v y.
Theorem substitute_ok : forall v replaceThis withThis inThis, Theorem substitute_ok : forall v replaceThis withThis inThis,
interp (substitute inThis replaceThis withThis) v interp (substitute inThis replaceThis withThis) v
= interp inThis (extend_valuation v replaceThis (interp withThis v)). = interp inThis (v $+ (replaceThis, interp withThis v)).
Proof. Proof.
induct inThis; simplify; try equality. induct inThis; simplify; try equality.
(* One case left after our basic heuristic: (* One case left after our basic heuristic:
* the variable case, naturally! * the variable case, naturally! *)
* A little trick: unfold a definition *before* case analysis, cases (x ==v replaceThis); simplify; try equality.
* to expose an extra spot where our test expression appears,
* so that it can be handled by [cases] at the same time. *)
unfold extend_valuation.
cases (x ==v replaceThis); simplify; equality.
Qed. Qed.
(* Great; we seem to have gotten that one right, too. *) (* Great; we seem to have gotten that one right, too. *)
@ -106,6 +108,7 @@ Fixpoint doSomeArithmetic (e : arith) : arith :=
| Var _ => e | Var _ => e
| Plus (Const n1) (Const n2) => Const (n1 + n2) | Plus (Const n1) (Const n2) => Const (n1 + n2)
| Plus e1 e2 => Plus (doSomeArithmetic e1) (doSomeArithmetic e2) | Plus e1 e2 => Plus (doSomeArithmetic e1) (doSomeArithmetic e2)
| Minus e1 e2 => Minus (doSomeArithmetic e1) (doSomeArithmetic e2)
| Times (Const n1) (Const n2) => Const (n1 * n2) | Times (Const n1) (Const n2) => Const (n1 * n2)
| Times e1 e2 => Times (doSomeArithmetic e1) (doSomeArithmetic e2) | Times e1 e2 => Times (doSomeArithmetic e1) (doSomeArithmetic e2)
end. end.
@ -129,18 +132,27 @@ Inductive instruction :=
| PushConst (n : nat) | PushConst (n : nat)
| PushVar (x : var) | PushVar (x : var)
| Add | Add
| Subtract
| Multiply. | Multiply.
(* What does it all mean? An interpreter tells us unambiguously! *) (* What does it all mean? An interpreter tells us unambiguously! *)
Definition run1 (i : instruction) (v : valuation) (stack : list nat) : list nat := Definition run1 (i : instruction) (v : valuation) (stack : list nat) : list nat :=
match i with match i with
| PushConst n => n :: stack | PushConst n => n :: stack
| PushVar x => v x :: stack | PushVar x => (match v $? x with
| None => 0
| Some n => n
end) :: stack
| Add => | Add =>
match stack with match stack with
| arg2 :: arg1 :: stack' => arg1 + arg2 :: stack' | arg2 :: arg1 :: stack' => arg1 + arg2 :: stack'
| _ => stack (* arbitrary behavior in erroneous case *) | _ => stack (* arbitrary behavior in erroneous case *)
end end
| Subtract =>
match stack with
| arg2 :: arg1 :: stack' => arg1 - arg2 :: stack'
| _ => stack (* arbitrary behavior in erroneous case *)
end
| Multiply => | Multiply =>
match stack with match stack with
| arg2 :: arg1 :: stack' => arg1 * arg2 :: stack' | arg2 :: arg1 :: stack' => arg1 * arg2 :: stack'
@ -163,6 +175,7 @@ Fixpoint compile (e : arith) : list instruction :=
| Const n => PushConst n :: nil | Const n => PushConst n :: nil
| Var x => PushVar x :: nil | Var x => PushVar x :: nil
| Plus e1 e2 => compile e1 ++ compile e2 ++ Add :: nil | Plus e1 e2 => compile e1 ++ compile e2 ++ Add :: nil
| Minus e1 e2 => compile e1 ++ compile e2 ++ Subtract :: nil
| Times e1 e2 => compile e1 ++ compile e2 ++ Multiply :: nil | Times e1 e2 => compile e1 ++ compile e2 ++ Multiply :: nil
end. end.
@ -197,6 +210,13 @@ Proof.
rewrite IHe2. rewrite IHe2.
simplify. simplify.
equality. equality.
rewrite app_assoc_reverse.
rewrite IHe1.
rewrite app_assoc_reverse.
rewrite IHe2.
simplify.
equality.
Qed. Qed.
(* The overall theorem follows as a simple corollary. *) (* The overall theorem follows as a simple corollary. *)
@ -216,3 +236,119 @@ Proof.
apply compile_ok'. apply compile_ok'.
(* Direct appeal to a previously proved lemma *) (* Direct appeal to a previously proved lemma *)
Qed. Qed.
(* Let's get a bit fancier, moving toward the level of general-purpose
* imperative languages. Here's a language of commands, building on the
* language of expressions we have defined. *)
Inductive cmd :=
| Skip
| Assign (x : var) (e : arith)
| Sequence (c1 c2 : cmd)
| Repeat (e : arith) (body : cmd).
(* That last constructor is for repeating a body command some number of
* times. Note that we sneakily avoid constructs that could introduce
* nontermination, since Coq only accepts terminating programs, and we want to
* write an interpreter for commands.
* In contrast to our last one, this interpreter *transforms valuations*.
* We use a helper function for self-composing a function some number of
* times. *)
Fixpoint selfCompose {A} (f : A -> A) (n : nat) : A -> A :=
match n with
| O => fun x => x
| S n' => fun x => selfCompose f n' (f x)
end.
Fixpoint exec (c : cmd) (v : valuation) : valuation :=
match c with
| Skip => v
| Assign x e => v $+ (x, interp e v)
| Sequence c1 c2 => exec c2 (exec c1 v)
| Repeat e body => selfCompose (exec body) (interp e v) v
end.
(* Let's define some programs and prove that they operate in certain ways. *)
Example factorial_ugly :=
Sequence
(Assign "output" (Const 1))
(Repeat (Var "input")
(Sequence
(Assign "output" (Times (Var "output") (Var "input")))
(Assign "input" (Minus (Var "input") (Const 1))))).
(* Ouch; that code is hard to read. Let's introduce some notations to make the
* concrete syntax more palatable. We won't explain the general mechanisms on
* display here, but see the Coq manual for details, or try to reverse-engineer
* them from our examples. *)
Coercion Const : nat >-> arith.
Coercion Var : var >-> arith.
Infix "+" := Plus : arith_scope.
Infix "-" := Minus : arith_scope.
Infix "*" := Times : arith_scope.
Delimit Scope arith_scope with arith.
Notation "x <- e" := (Assign x e%arith) (at level 75).
Infix ";" := Sequence (at level 76).
Notation "'repeat' e 'doing' body 'done'" := (Repeat e%arith body) (at level 75).
(* OK, let's try that program again. *)
Example factorial :=
"output" <- 1;
repeat "input" doing
"output" <- "output" * "input";
"input" <- "input" - 1
done.
(* Now we prove that it really computes factorial.
* First, a reference implementation as a functional program. *)
Fixpoint fact (n : nat) : nat :=
match n with
| O => 1
| S n' => n * fact n'
end.
Definition factorial_body :=
"output" <- "output" * "input";
"input" <- "input" - 1.
(* Note that here we're careful to put the quantified variable [input] *first*,
* because the variables coming after it will need to *change* in the course of
* the induction. Try switching the order to see what goes wrong if we put
* [input] later. *)
Lemma factorial_ok' : forall input output v,
v $? "input" = Some input
-> v $? "output" = Some output
-> selfCompose (exec factorial_body) input v
= v $+ ("input", 0) $+ ("output", output * fact input).
Proof.
induct input; simplify.
maps_equal; simplify.
rewrite H0.
f_equal.
linear_arithmetic.
trivial.
rewrite H, H0.
rewrite (IHinput (output * S input)).
maps_equal; simplify.
f_equal; ring.
simplify; f_equal; linear_arithmetic.
simplify; equality.
Qed.
Theorem factorial_ok : forall v input,
v $? "input" = Some input
-> exec factorial v $? "output" = Some (fact input).
Proof.
simplify.
rewrite H.
rewrite (factorial_ok' input 1); simplify.
f_equal; linear_arithmetic.
trivial.
trivial.
Qed.

13
Map.v
View file

@ -34,8 +34,9 @@ Module Type S.
m $<= m' m $<= m'
-> add m k v $<= add m' k v. -> add m k v $<= add m' k v.
Axiom lookup_add_eq : forall A B (m : map A B) k v, Axiom lookup_add_eq : forall A B (m : map A B) k1 k2 v,
add m k v $? k = Some v. k1 = k2
-> add m k1 v $? k2 = Some v.
Axiom lookup_add_ne : forall A B (m : map A B) k k' v, Axiom lookup_add_ne : forall A B (m : map A B) k k' v,
k' <> k k' <> k
@ -142,11 +143,13 @@ Module M : S.
destruct (decide (k0 = k)); auto. destruct (decide (k0 = k)); auto.
Qed. Qed.
Theorem lookup_add_eq : forall A B (m : map A B) k v, Theorem lookup_add_eq : forall A B (m : map A B) k1 k2 v,
lookup (add m k v) k = Some v. k1 = k2
-> lookup (add m k1 v) k2 = Some v.
Proof. Proof.
unfold lookup, add; intuition. unfold lookup, add; intuition.
destruct (decide (k = k)); tauto. destruct (decide (k2 = k1)); try tauto.
congruence.
Qed. Qed.
Theorem lookup_add_ne : forall A B (m : map A B) k k' v, Theorem lookup_add_ne : forall A B (m : map A B) k k' v,

2
Var.v
View file

@ -1,7 +1,7 @@
Require Import String. Require Import String.
Definition var := string. Notation var := string.
Definition var_eq : forall x y : var, {x = y} + {x <> y} := string_dec. Definition var_eq : forall x y : var, {x = y} + {x <> y} := string_dec.
Infix "==v" := var_eq (no associativity, at level 50). Infix "==v" := var_eq (no associativity, at level 50).