mirror of
https://github.com/achlipala/frap.git
synced 2025-01-08 17:14:14 +00:00
LambdaCalculusAndTypeSoundness_template update
This commit is contained in:
parent
8c2c0f5cfa
commit
bcbb2181be
1 changed files with 74 additions and 147 deletions
|
@ -37,7 +37,7 @@ Module Ulc.
|
|||
Inductive value : exp -> Prop :=
|
||||
| Value : forall x e, value (Abs x e).
|
||||
|
||||
Hint Constructors eval value.
|
||||
Local Hint Constructors eval value : core.
|
||||
|
||||
Theorem value_eval : forall v,
|
||||
value v
|
||||
|
@ -46,7 +46,7 @@ Module Ulc.
|
|||
invert 1; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve value_eval.
|
||||
Local Hint Resolve value_eval : core.
|
||||
|
||||
Theorem eval_value : forall e v,
|
||||
eval e v
|
||||
|
@ -55,7 +55,7 @@ Module Ulc.
|
|||
induct 1; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve eval_value.
|
||||
Local Hint Resolve eval_value : core.
|
||||
|
||||
(* Some notations, to let us write more normal-looking lambda terms *)
|
||||
Coercion Var : var >-> exp.
|
||||
|
@ -276,59 +276,51 @@ Module Ulc.
|
|||
Qed.
|
||||
|
||||
|
||||
(** * Small-step semantics with evaluation contexts *)
|
||||
|
||||
Inductive context : Set :=
|
||||
| Hole : context
|
||||
| App1 : context -> exp -> context
|
||||
| App2 : exp -> context -> context.
|
||||
|
||||
Inductive plug : context -> exp -> exp -> Prop :=
|
||||
| PlugHole : forall e,
|
||||
plug Hole e e
|
||||
| PlugApp1 : forall c e1 e2 e,
|
||||
plug c e1 e
|
||||
-> plug (App1 c e2) e1 (App e e2)
|
||||
| PlugApp2 : forall c e1 e2 e,
|
||||
value e1
|
||||
-> plug c e2 e
|
||||
-> plug (App2 e1 c) e2 (App e1 e).
|
||||
(** * Small-step semantics *)
|
||||
|
||||
Inductive step : exp -> exp -> Prop :=
|
||||
| ContextBeta : forall c x e v e1 e2,
|
||||
| ContextBeta : forall x e v,
|
||||
value v
|
||||
-> plug c (App (Abs x e) v) e1
|
||||
-> plug c (subst v x e) e2
|
||||
-> step e1 e2.
|
||||
-> step (App (Abs x e) v) (subst v x e)
|
||||
|
||||
Hint Constructors plug step.
|
||||
(* However, we also need bureaucractic rules for pushing evaluation inside
|
||||
* applications. *)
|
||||
| App1 : forall e1 e1' e2,
|
||||
step e1 e1'
|
||||
-> step (App e1 e2) (App e1' e2)
|
||||
| App2 : forall v e2 e2',
|
||||
value v
|
||||
-> step e2 e2'
|
||||
-> step (App v e2) (App v e2').
|
||||
|
||||
Local Hint Constructors step : core.
|
||||
|
||||
(* Here we now go through a proof of equivalence between big- and small-step
|
||||
* semantics, though we won't spend any further commentary on it. *)
|
||||
|
||||
Lemma step_eval'' : forall v c x e e1 e2 v0,
|
||||
value v
|
||||
-> plug c (App (Abs x e) v) e1
|
||||
-> plug c (subst v x e) e2
|
||||
-> eval e2 v0
|
||||
-> eval e1 v0.
|
||||
Proof.
|
||||
induct c; invert 2; invert 1; simplify; eauto.
|
||||
invert H0; eauto.
|
||||
invert H0; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve step_eval''.
|
||||
|
||||
Lemma step_eval' : forall e1 e2,
|
||||
step e1 e2
|
||||
-> forall v, eval e2 v
|
||||
-> eval e1 v.
|
||||
Proof.
|
||||
invert 1; simplify; eauto.
|
||||
induct 1; simplify; eauto.
|
||||
|
||||
invert H0.
|
||||
econstructor.
|
||||
apply IHstep.
|
||||
eassumption.
|
||||
eassumption.
|
||||
assumption.
|
||||
|
||||
invert H1.
|
||||
econstructor.
|
||||
eassumption.
|
||||
apply IHstep.
|
||||
eassumption.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Hint Resolve step_eval'.
|
||||
Local Hint Resolve step_eval' : core.
|
||||
|
||||
Theorem step_eval : forall e v,
|
||||
step^* e v
|
||||
|
@ -338,76 +330,23 @@ Module Ulc.
|
|||
induct 1; eauto.
|
||||
Qed.
|
||||
|
||||
Lemma plug_functional : forall C e e1,
|
||||
plug C e e1
|
||||
-> forall e2, plug C e e2
|
||||
-> e1 = e2.
|
||||
Local Hint Resolve eval_value : core.
|
||||
|
||||
Theorem step_app1 : forall e1 e1' e2,
|
||||
step^* e1 e1'
|
||||
-> step^* (App e1 e2) (App e1' e2).
|
||||
Proof.
|
||||
induct 1; invert 1; simplify; try f_equal; eauto.
|
||||
induct 1; eauto.
|
||||
Qed.
|
||||
|
||||
Lemma plug_mirror : forall C e e', plug C e e'
|
||||
-> forall e1, exists e1', plug C e1 e1'.
|
||||
Theorem step_app2 : forall e2 e2' v,
|
||||
value v
|
||||
-> step^* e2 e2'
|
||||
-> step^* (App v e2) (App v e2').
|
||||
Proof.
|
||||
induct 1; simplify; eauto.
|
||||
|
||||
specialize (IHplug e0); first_order; eauto.
|
||||
|
||||
specialize (IHplug e0); first_order; eauto.
|
||||
Qed.
|
||||
|
||||
Fixpoint compose (C1 C2 : context) : context :=
|
||||
match C2 with
|
||||
| Hole => C1
|
||||
| App1 C2' e => App1 (compose C1 C2') e
|
||||
| App2 v C2' => App2 v (compose C1 C2')
|
||||
end.
|
||||
|
||||
Lemma compose_ok : forall C1 C2 e1 e2 e3,
|
||||
plug C1 e1 e2
|
||||
-> plug C2 e2 e3
|
||||
-> plug (compose C1 C2) e1 e3.
|
||||
Proof.
|
||||
induct 2; simplify; eauto.
|
||||
induct 2; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve compose_ok.
|
||||
|
||||
Lemma step_plug : forall e1 e2,
|
||||
step e1 e2
|
||||
-> forall C e1' e2', plug C e1 e1'
|
||||
-> plug C e2 e2'
|
||||
-> step e1' e2'.
|
||||
Proof.
|
||||
invert 1; simplify; eauto.
|
||||
Qed.
|
||||
|
||||
Lemma stepStar_plug : forall e1 e2,
|
||||
step^* e1 e2
|
||||
-> forall C e1' e2', plug C e1 e1'
|
||||
-> plug C e2 e2'
|
||||
-> step^* e1' e2'.
|
||||
Proof.
|
||||
induct 1; simplify.
|
||||
|
||||
assert (e1' = e2') by (eapply plug_functional; eassumption).
|
||||
subst.
|
||||
constructor.
|
||||
|
||||
assert (exists y', plug C y y') by eauto using plug_mirror.
|
||||
invert H3.
|
||||
eapply step_plug in H.
|
||||
econstructor.
|
||||
eassumption.
|
||||
eapply IHtrc.
|
||||
eassumption.
|
||||
assumption.
|
||||
eassumption.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Hint Resolve stepStar_plug eval_value.
|
||||
|
||||
Theorem eval_step : forall e v,
|
||||
eval e v
|
||||
-> step^* e v.
|
||||
|
@ -415,10 +354,16 @@ Module Ulc.
|
|||
induct 1; eauto.
|
||||
|
||||
eapply trc_trans.
|
||||
eapply stepStar_plug with (e1 := e1) (e2 := Abs x e1') (C := App1 Hole e2); eauto.
|
||||
apply step_app1.
|
||||
eassumption.
|
||||
eapply trc_trans.
|
||||
eapply stepStar_plug with (e1 := e2) (e2 := v2) (C := App2 (Abs x e1') Hole); eauto.
|
||||
eapply step_app2.
|
||||
constructor.
|
||||
eassumption.
|
||||
econstructor.
|
||||
constructor.
|
||||
eauto.
|
||||
assumption.
|
||||
Qed.
|
||||
End Ulc.
|
||||
|
||||
|
@ -444,50 +389,32 @@ Module Stlc.
|
|||
| App e2' e2'' => App (subst e1 x e2') (subst e1 x e2'')
|
||||
end.
|
||||
|
||||
Inductive context : Set :=
|
||||
| Hole : context
|
||||
| Plus1 : context -> exp -> context
|
||||
| Plus2 : exp -> context -> context
|
||||
| App1 : context -> exp -> context
|
||||
| App2 : exp -> context -> context.
|
||||
|
||||
Inductive plug : context -> exp -> exp -> Prop :=
|
||||
| PlugHole : forall e, plug Hole e e
|
||||
| PlugPlus1 : forall e e' C e2,
|
||||
plug C e e'
|
||||
-> plug (Plus1 C e2) e (Plus e' e2)
|
||||
| PlugPlus2 : forall e e' v1 C,
|
||||
value v1
|
||||
-> plug C e e'
|
||||
-> plug (Plus2 v1 C) e (Plus v1 e')
|
||||
| PlugApp1 : forall e e' C e2,
|
||||
plug C e e'
|
||||
-> plug (App1 C e2) e (App e' e2)
|
||||
| PlugApp2 : forall e e' v1 C,
|
||||
value v1
|
||||
-> plug C e e'
|
||||
-> plug (App2 v1 C) e (App v1 e').
|
||||
|
||||
Inductive step0 : exp -> exp -> Prop :=
|
||||
| Beta : forall x e v,
|
||||
value v
|
||||
-> step0 (App (Abs x e) v) (subst v x e)
|
||||
| Add : forall n1 n2,
|
||||
step0 (Plus (Const n1) (Const n2)) (Const (n1 + n2)).
|
||||
|
||||
Inductive step : exp -> exp -> Prop :=
|
||||
| StepRule : forall C e1 e2 e1' e2',
|
||||
plug C e1 e1'
|
||||
-> plug C e2 e2'
|
||||
-> step0 e1 e2
|
||||
-> step e1' e2'.
|
||||
| Beta : forall x e v,
|
||||
value v
|
||||
-> step (App (Abs x e) v) (subst v x e)
|
||||
| Add : forall n1 n2,
|
||||
step (Plus (Const n1) (Const n2)) (Const (n1 + n2))
|
||||
| App1 : forall e1 e1' e2,
|
||||
step e1 e1'
|
||||
-> step (App e1 e2) (App e1' e2)
|
||||
| App2 : forall v e2 e2',
|
||||
value v
|
||||
-> step e2 e2'
|
||||
-> step (App v e2) (App v e2')
|
||||
| Plus1 : forall e1 e1' e2,
|
||||
step e1 e1'
|
||||
-> step (Plus e1 e2) (Plus e1' e2)
|
||||
| Plus2 : forall v e2 e2',
|
||||
value v
|
||||
-> step e2 e2'
|
||||
-> step (Plus v e2) (Plus v e2').
|
||||
|
||||
Definition trsys_of (e : exp) := {|
|
||||
Initial := {e};
|
||||
Step := step
|
||||
|}.
|
||||
|
||||
|
||||
|
||||
Inductive type :=
|
||||
| Nat (* Numbers *)
|
||||
| Fun (dom ran : type) (* Functions *).
|
||||
|
@ -510,7 +437,7 @@ Module Stlc.
|
|||
-> hasty G e2 t1
|
||||
-> hasty G (App e1 e2) t2.
|
||||
|
||||
Hint Constructors value plug step0 step hasty.
|
||||
Local Hint Constructors value step hasty : core.
|
||||
|
||||
(* Some notation to make it more pleasant to write programs *)
|
||||
Infix "-->" := Fun (at level 60, right associativity).
|
||||
|
@ -564,7 +491,7 @@ Module Stlc.
|
|||
Proof.
|
||||
Admitted.
|
||||
|
||||
Hint Resolve hasty_change.
|
||||
Local Hint Resolve hasty_change : core.
|
||||
|
||||
Lemma preservation : forall e1 e2,
|
||||
step e1 e2
|
||||
|
|
Loading…
Reference in a new issue