mirror of
https://github.com/achlipala/frap.git
synced 2025-01-05 23:54:14 +00:00
AbstractInterpretation: analyzed one program
This commit is contained in:
parent
e892c8dbab
commit
c303dc02c9
2 changed files with 99 additions and 70 deletions
|
@ -250,16 +250,6 @@ Module SimpleAbstractInterpreter.
|
|||
| Some ss'' => merge_astates ss'' ss'
|
||||
end).
|
||||
|
||||
Inductive interpret a : astates a -> astates a -> Prop :=
|
||||
| InterpretDone : forall ss,
|
||||
oneStepClosure ss ss
|
||||
-> interpret ss ss
|
||||
|
||||
| InterpretStep : forall ss ss' ss'',
|
||||
oneStepClosure ss ss'
|
||||
-> interpret (merge_astates ss ss') ss''
|
||||
-> interpret ss ss''.
|
||||
|
||||
Definition subsumed a (s1 s2 : astate a) :=
|
||||
forall x, match s1 $? x with
|
||||
| None => s2 $? x = None
|
||||
|
@ -291,6 +281,17 @@ Module SimpleAbstractInterpreter.
|
|||
|
||||
Hint Resolve subsumeds_refl.
|
||||
|
||||
Inductive interpret a : astates a -> astates a -> astates a -> Prop :=
|
||||
| InterpretDone : forall ss1 any ss2,
|
||||
oneStepClosure ss1 ss2
|
||||
-> subsumeds ss2 ss1
|
||||
-> interpret ss1 any ss1
|
||||
|
||||
| InterpretStep : forall ss worklist ss' ss'',
|
||||
oneStepClosure worklist ss'
|
||||
-> interpret (merge_astates ss ss') ss' ss''
|
||||
-> interpret ss worklist ss''.
|
||||
|
||||
Lemma oneStepClosure_sound : forall a, absint_sound a
|
||||
-> forall ss ss' : astates a, oneStepClosure ss ss'
|
||||
-> forall c s s' c', ss $? c = Some s
|
||||
|
@ -474,25 +475,25 @@ Module SimpleAbstractInterpreter.
|
|||
Qed.
|
||||
|
||||
Lemma interpret_sound' : forall c a, absint_sound a
|
||||
-> forall ss ss' : astates a, interpret ss ss'
|
||||
-> forall ss worklist ss' : astates a, interpret ss worklist ss'
|
||||
-> ss $? c = Some $0
|
||||
-> invariantFor (absint_trsys a c) (fun p => exists s, ss' $? snd p = Some s
|
||||
/\ subsumed (fst p) s).
|
||||
Proof.
|
||||
induct 2; simplify.
|
||||
induct 2; simplify; subst.
|
||||
|
||||
apply invariant_induction; simplify; propositional; subst; simplify; eauto.
|
||||
|
||||
invert H2; propositional.
|
||||
invert H3; propositional.
|
||||
cases s.
|
||||
cases s'.
|
||||
simplify.
|
||||
eapply abs_step_monotone in H3; eauto.
|
||||
invert H3; propositional.
|
||||
eapply oneStepClosure_sound in H3; eauto.
|
||||
invert H3; propositional.
|
||||
eexists; propositional.
|
||||
eassumption.
|
||||
eapply abs_step_monotone in H4; eauto.
|
||||
invert H4; propositional.
|
||||
eapply oneStepClosure_sound in H4; eauto.
|
||||
invert H4; propositional.
|
||||
eapply H1 in H4.
|
||||
invert H4; propositional.
|
||||
eauto using subsumed_trans.
|
||||
|
||||
apply IHinterpret.
|
||||
|
@ -506,7 +507,7 @@ Module SimpleAbstractInterpreter.
|
|||
|
||||
Theorem interpret_sound : forall c a (ss : astates a),
|
||||
absint_sound a
|
||||
-> interpret ($0 $+ (c, $0)) ss
|
||||
-> interpret ($0 $+ (c, $0)) ($0 $+ (c, $0)) ss
|
||||
-> invariantFor (absint_trsys a c) (fun p => exists s, ss $? snd p = Some s
|
||||
/\ subsumed (fst p) s).
|
||||
Proof.
|
||||
|
@ -781,9 +782,9 @@ Module SimpleAbstractInterpreter.
|
|||
|
||||
Ltac simplify_map :=
|
||||
match goal with
|
||||
| [ |- context[?m $+ (?k, ?v)] ] =>
|
||||
| [ |- context[@add ?A ?B ?m ?k ?v] ] =>
|
||||
simplify_map' (m $+ (k, v)) tt ltac:(fun m' =>
|
||||
replace (m $+ (k, v)) with m' by maps_equal)
|
||||
replace (@add A B m k v) with m' by maps_equal)
|
||||
end.
|
||||
|
||||
Definition easy :=
|
||||
|
@ -792,9 +793,59 @@ Module SimpleAbstractInterpreter.
|
|||
"n" <- "n" - 2
|
||||
done.
|
||||
|
||||
Ltac interpret1 := eapply InterpretStep; [ repeat (apply OscNil || apply OscCons)
|
||||
| unfold merge_astates, merge_astate;
|
||||
simplify; repeat simplify_map ].
|
||||
|
||||
Lemma subsumeds_empty : forall a (ss : astates a),
|
||||
subsumeds $0 ss.
|
||||
Proof.
|
||||
unfold subsumeds; simplify.
|
||||
equality.
|
||||
Qed.
|
||||
|
||||
Lemma subsumeds_add_left : forall a (ss1 ss2 : astates a) c s,
|
||||
ss2 $? c = Some s
|
||||
-> subsumeds ss1 ss2
|
||||
-> subsumeds (ss1 $+ (c, s)) ss2.
|
||||
Proof.
|
||||
unfold subsumeds; simplify.
|
||||
cases (command_equal c c0); subst; simplify; eauto.
|
||||
invert H1; eauto.
|
||||
Qed.
|
||||
|
||||
Ltac interpret_done := eapply InterpretDone; [
|
||||
repeat (apply OscNil || apply OscCons)
|
||||
| unfold merge_astates, merge_astate; simplify; repeat simplify_map;
|
||||
repeat (apply subsumeds_add_left || apply subsumeds_empty); (simplify; equality) ].
|
||||
|
||||
Lemma final_even : forall (s s' : astate parity_absint) v x,
|
||||
compatible1 s v
|
||||
-> subsumed s s'
|
||||
-> s' $? x = Some Even
|
||||
-> exists n, v $? x = Some n /\ isEven n.
|
||||
Proof.
|
||||
unfold compatible1, subsumed; simplify.
|
||||
specialize (H x); specialize (H0 x).
|
||||
cases (s $? x); simplify.
|
||||
|
||||
rewrite Heq in *.
|
||||
assert (Some t = Some t) by equality.
|
||||
apply H in H2.
|
||||
first_order.
|
||||
eapply H0 in H1.
|
||||
invert H1.
|
||||
eauto.
|
||||
assumption.
|
||||
|
||||
rewrite Heq in *.
|
||||
equality.
|
||||
Qed.
|
||||
|
||||
Theorem easy_even : forall v n,
|
||||
isEven n
|
||||
-> invariantFor (trsys_of v easy) (fun p => exists n, fst p $? "n" = Some n /\ isEven n).
|
||||
-> invariantFor (trsys_of v easy) (fun p => snd p = Skip
|
||||
-> exists n, fst p $? "n" = Some n /\ isEven n).
|
||||
Proof.
|
||||
simplify.
|
||||
eapply invariant_weaken.
|
||||
|
@ -807,52 +858,18 @@ Module SimpleAbstractInterpreter.
|
|||
apply interpret_sound.
|
||||
apply parity_sound.
|
||||
|
||||
Ltac interpret1 := eapply InterpretStep; [ repeat (apply OscNil || apply OscCons)
|
||||
| unfold merge_astates, merge_astate;
|
||||
simplify; repeat simplify_map ].
|
||||
interpret1.
|
||||
interpret1.
|
||||
interpret1.
|
||||
interpret1.
|
||||
interpret1.
|
||||
interpret_done.
|
||||
|
||||
interpret1.
|
||||
interpret1.
|
||||
interpret1.
|
||||
invert 1.
|
||||
first_order.
|
||||
invert H1; simplify.
|
||||
invert H2.
|
||||
eapply final_even; eauto; simplify; equality.
|
||||
Qed.
|
||||
|
||||
eapply InterpretStep.
|
||||
repeat (apply OscNil || apply OscCons).
|
||||
simplify.
|
||||
unfold merge_astates, merge_astate.
|
||||
simplify.
|
||||
|
||||
interpret1.
|
||||
|
||||
simplify.
|
||||
|
||||
simplify_map.
|
||||
|
||||
Ltac interpret1 :=
|
||||
eapply InterpretStep; [ (repeat (apply OscNil || eapply OscCons);
|
||||
invert 1; repeat (match goal with
|
||||
| [ H : step _ _ |- _ ] => invert H
|
||||
| [ _ : match ?E with
|
||||
| Some n => n
|
||||
| None => 0
|
||||
end = 0 |- _ ] => cases E; try linear_arithmetic
|
||||
end; simplify); simplify;
|
||||
try solve [ eapply compatible_skip; eassumption
|
||||
| eapply compatible_skip2; eassumption || congruence
|
||||
| eapply compatible_const; eassumption ]) | ];
|
||||
repeat match goal with
|
||||
| [ |- context[@add ?A ?B ?m _ _] ] =>
|
||||
match m with
|
||||
| @empty _ _ => fail 1
|
||||
| _ => unify m (@empty A B)
|
||||
end
|
||||
end.
|
||||
|
||||
interpret1.
|
||||
unfold merge_astates, merge_astate; simplify.
|
||||
interpret1.
|
||||
unfold merge_astates, merge_astate; simplify.
|
||||
simplify_map.
|
||||
interpret1.
|
||||
unfold merge_astates, merge_astate; simplify.
|
||||
simplify_map.
|
||||
interpret1.
|
||||
End SimpleAbstractInterpreter.
|
||||
|
|
12
Map.v
12
Map.v
|
@ -139,6 +139,10 @@ Module Type S.
|
|||
end).
|
||||
|
||||
Hint Extern 3 (_ = _) => maps_equal.
|
||||
|
||||
Axiom lookup_split : forall A B (m : fmap A B) k v k' v',
|
||||
(m $+ (k, v)) $? k' = Some v'
|
||||
-> (k' <> k /\ m $? k' = Some v') \/ (k' = k /\ v' = v).
|
||||
End S.
|
||||
|
||||
Module M : S.
|
||||
|
@ -388,6 +392,14 @@ Module M : S.
|
|||
| [ _ : context[if ?E then _ else _] |- _ ] => destruct E
|
||||
end; intuition congruence).
|
||||
Qed.
|
||||
|
||||
Lemma lookup_split : forall A B (m : fmap A B) k v k' v',
|
||||
lookup (add m k v) k' = Some v'
|
||||
-> (k' <> k /\ lookup m k' = Some v') \/ (k' = k /\ v' = v).
|
||||
Proof.
|
||||
unfold lookup, add; simpl; intros.
|
||||
destruct (decide (k' = k)); intuition congruence.
|
||||
Qed.
|
||||
End M.
|
||||
|
||||
Export M.
|
||||
|
|
Loading…
Reference in a new issue