mirror of
https://github.com/achlipala/frap.git
synced 2025-01-23 23:06:11 +00:00
ConcurrentSeparationLogic: first example
This commit is contained in:
parent
38d4e24966
commit
c335550a77
1 changed files with 107 additions and 11 deletions
|
@ -362,6 +362,113 @@ Proof.
|
|||
reflexivity.
|
||||
Qed.
|
||||
|
||||
(** * Examples *)
|
||||
|
||||
Opaque heq himp lift star exis ptsto.
|
||||
|
||||
(* Here comes some automation that we won't explain in detail, instead opting to
|
||||
* use examples. *)
|
||||
|
||||
Theorem use_lemma : forall linvs result P' (c : cmd result) (Q : result -> hprop) P R,
|
||||
hoare_triple linvs P' c Q
|
||||
-> P ===> P' * R
|
||||
-> hoare_triple linvs P c (fun r => Q r * R)%sep.
|
||||
Proof.
|
||||
simp.
|
||||
eapply HtWeaken.
|
||||
eapply HtFrame.
|
||||
eassumption.
|
||||
eauto.
|
||||
Qed.
|
||||
|
||||
Theorem HtRead' : forall linvs a v,
|
||||
hoare_triple linvs (a |-> v)%sep (Read a) (fun r => a |-> v * [| r = v |])%sep.
|
||||
Proof.
|
||||
simp.
|
||||
apply HtWeaken with (exists r, a |-> r * [| r = v |])%sep.
|
||||
eapply HtStrengthen.
|
||||
apply HtRead.
|
||||
simp.
|
||||
cancel; auto.
|
||||
subst; cancel.
|
||||
cancel; auto.
|
||||
Qed.
|
||||
|
||||
Theorem HtRead'' : forall linvs p P R,
|
||||
P ===> (exists v, p |-> v * R v)
|
||||
-> hoare_triple linvs P (Read p) (fun r => p |-> r * R r)%sep.
|
||||
Proof.
|
||||
simp.
|
||||
eapply HtWeaken.
|
||||
apply HtRead.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Lemma HtReturn' : forall linvs P {result : Set} (v : result) Q,
|
||||
P ===> Q v
|
||||
-> hoare_triple linvs P (Return v) Q.
|
||||
Proof.
|
||||
simp.
|
||||
eapply HtStrengthen.
|
||||
constructor.
|
||||
simp.
|
||||
cancel.
|
||||
Qed.
|
||||
|
||||
Ltac basic := apply HtReturn' || eapply HtWrite || eapply HtAlloc || eapply HtFree
|
||||
|| (eapply HtLock; simplify; solve [ eauto ])
|
||||
|| (eapply HtUnlock; simplify; solve [ eauto ]).
|
||||
|
||||
Ltac step0 := basic || eapply HtBind || (eapply use_lemma; [ basic | cancel; auto ])
|
||||
|| (eapply use_lemma; [ eapply HtRead' | solve [ cancel; auto ] ])
|
||||
|| (eapply HtRead''; solve [ cancel ])
|
||||
|| (eapply HtStrengthen; [ eapply use_lemma; [ basic | cancel; auto ] | ])
|
||||
|| (eapply HtConsequence; [ apply HtFail | .. ]).
|
||||
Ltac step := step0; simp.
|
||||
Ltac ht := simp; repeat step.
|
||||
Ltac conseq := simplify; eapply HtConsequence.
|
||||
Ltac use_IH H := conseq; [ apply H | .. ]; ht.
|
||||
Ltac loop_inv0 Inv := (eapply HtWeaken; [ apply HtLoop with (I := Inv) | .. ])
|
||||
|| (eapply HtConsequence; [ apply HtLoop with (I := Inv) | .. ]).
|
||||
Ltac loop_inv Inv := loop_inv0 Inv; ht.
|
||||
Ltac fork0 P1 P2 := apply HtWeaken with (P := (P1 * P2)%sep); [ apply HtPar | ].
|
||||
Ltac fork P1 P2 := fork0 P1 P2 || (eapply HtStrengthen; [ fork0 P1 P2 | ]).
|
||||
Ltac use H := (eapply use_lemma; [ eapply H | cancel; auto ])
|
||||
|| (eapply HtStrengthen; [ eapply use_lemma; [ eapply H | cancel; auto ] | ]).
|
||||
|
||||
Ltac heq := intros; apply himp_heq; split.
|
||||
|
||||
Example incrementer :=
|
||||
for i := tt loop
|
||||
_ <- Lock 0;
|
||||
n <- Read 0;
|
||||
_ <- Write 0 (n + 1);
|
||||
_ <- Unlock 0;
|
||||
Return (Again tt)
|
||||
done.
|
||||
|
||||
Definition incrementer_inv :=
|
||||
(exists n, 0 |-> n * [| n > 0 |])%sep.
|
||||
|
||||
Theorem incrementers_ok :
|
||||
[incrementer_inv] ||- {{emp}} (incrementer || incrementer) {{_ ~> emp}}.
|
||||
Proof.
|
||||
unfold incrementer, incrementer_inv.
|
||||
simp.
|
||||
fork (emp%sep) (emp%sep).
|
||||
loop_inv (fun _ : loop_outcome unit => emp%sep).
|
||||
cancel.
|
||||
cancel.
|
||||
loop_inv (fun _ : loop_outcome unit => emp%sep).
|
||||
cancel.
|
||||
cancel.
|
||||
cancel.
|
||||
cancel.
|
||||
Qed.
|
||||
|
||||
|
||||
(** * Soundness proof *)
|
||||
|
||||
Hint Resolve himp_refl.
|
||||
|
||||
Lemma invert_Return : forall linvs {result : Set} (r : result) P Q,
|
||||
|
@ -659,17 +766,6 @@ Proof.
|
|||
Opaque himp.
|
||||
Qed.
|
||||
|
||||
Lemma HtReturn' : forall linvs P {result : Set} (v : result) Q,
|
||||
P ===> Q v
|
||||
-> hoare_triple linvs P (Return v) Q.
|
||||
Proof.
|
||||
simp.
|
||||
eapply HtStrengthen.
|
||||
constructor.
|
||||
simp.
|
||||
cancel.
|
||||
Qed.
|
||||
|
||||
Opaque heq himp lift star exis ptsto.
|
||||
|
||||
Lemma invert_Lock : forall linvs a P Q,
|
||||
|
|
Loading…
Reference in a new issue