mirror of
https://github.com/achlipala/frap.git
synced 2024-11-10 00:07:51 +00:00
FirstClassFunctions: combinators for tree traversals, applied to the Interpreters imperative language
This commit is contained in:
parent
fb3c957cd8
commit
c863b12c5b
1 changed files with 197 additions and 11 deletions
|
@ -31,7 +31,7 @@ Definition pascal := {|
|
|||
AppearedInYear := 1970
|
||||
|}.
|
||||
|
||||
Definition c := {|
|
||||
Definition clang := {|
|
||||
Name := "C";
|
||||
PurelyFunctional := false;
|
||||
AppearedInYear := 1972
|
||||
|
@ -55,7 +55,7 @@ Definition ocaml := {|
|
|||
AppearedInYear := 1996
|
||||
|}.
|
||||
|
||||
Definition languages := [pascal; c; gallina; haskell; ocaml].
|
||||
Definition languages := [pascal; clang; gallina; haskell; ocaml].
|
||||
|
||||
|
||||
(** * Classic list functions *)
|
||||
|
@ -213,7 +213,7 @@ Definition not_introduced_later (l1 l2 : programming_language) : bool :=
|
|||
|
||||
Compute insertion_sort
|
||||
not_introduced_later
|
||||
[gallina; pascal; c; ocaml; haskell].
|
||||
[gallina; pascal; clang; ocaml; haskell].
|
||||
|
||||
Corollary insertion_sort_languages : forall langs,
|
||||
sorted not_introduced_later (insertion_sort not_introduced_later langs) = true.
|
||||
|
@ -274,12 +274,12 @@ Inductive xform :=
|
|||
| IsZero
|
||||
| Not.
|
||||
|
||||
Fixpoint interp (xf : xform) : dyn -> dyn :=
|
||||
Fixpoint transform (xf : xform) : dyn -> dyn :=
|
||||
match xf with
|
||||
| Identity => id
|
||||
| Compose f1 f2 => compose (interp f1) (interp f2)
|
||||
| Map f => dmap (interp f)
|
||||
| Filter f => dfilter (interp f)
|
||||
| Compose f1 f2 => compose (transform f1) (transform f2)
|
||||
| Map f => dmap (transform f)
|
||||
| Filter f => dfilter (transform f)
|
||||
|
||||
| ConstantBool b => fun _ => Bool b
|
||||
| ConstantNumber n => fun _ => Number n
|
||||
|
@ -287,8 +287,8 @@ Fixpoint interp (xf : xform) : dyn -> dyn :=
|
|||
| Not => dnot
|
||||
end.
|
||||
|
||||
Compute interp (Map IsZero) (List [Number 0; Number 1; Number 2; Number 0; Number 3]).
|
||||
Compute interp (Filter IsZero) (List [Number 0; Number 1; Number 2; Number 0; Number 3]).
|
||||
Compute transform (Map IsZero) (List [Number 0; Number 1; Number 2; Number 0; Number 3]).
|
||||
Compute transform (Filter IsZero) (List [Number 0; Number 1; Number 2; Number 0; Number 3]).
|
||||
|
||||
Fixpoint optimize (xf : xform) : xform :=
|
||||
match xf with
|
||||
|
@ -298,6 +298,9 @@ Fixpoint optimize (xf : xform) : xform :=
|
|||
| xf1', Identity => xf1'
|
||||
| Not, Not => Identity
|
||||
| Map xf1', Map xf2' => Map (Compose xf1' xf2')
|
||||
| Not, ConstantBool b => ConstantBool (negb b)
|
||||
| IsZero, ConstantNumber 0 => ConstantBool true
|
||||
| IsZero, ConstantNumber (S _) => ConstantBool false
|
||||
| xf1', xf2' => Compose xf1' xf2'
|
||||
end
|
||||
| Map xf1 =>
|
||||
|
@ -392,7 +395,7 @@ Proof.
|
|||
equality.
|
||||
Qed.
|
||||
|
||||
Theorem optimize_ok : forall xf x, interp (optimize xf) x = interp xf x.
|
||||
Theorem optimize_ok : forall xf x, transform (optimize xf) x = transform xf x.
|
||||
Proof.
|
||||
induct xf; simplify; try equality.
|
||||
|
||||
|
@ -401,6 +404,7 @@ Proof.
|
|||
(cases (optimize xf2); optimize_ok).
|
||||
|
||||
cases x; simplify; trivial.
|
||||
cases n; trivial.
|
||||
}
|
||||
|
||||
{
|
||||
|
@ -485,7 +489,7 @@ Proof.
|
|||
Qed.
|
||||
|
||||
Theorem neverGrow : forall xf x,
|
||||
dsize (interp xf x) <= dsize x.
|
||||
dsize (transform xf x) <= dsize x.
|
||||
Proof.
|
||||
induct xf; simplify; try linear_arithmetic.
|
||||
|
||||
|
@ -522,6 +526,188 @@ Proof.
|
|||
Qed.
|
||||
|
||||
|
||||
(** * Combinators for syntax-tree transformations *)
|
||||
|
||||
(* Let's reprise the imperative language from the end of Interpreters. *)
|
||||
|
||||
Inductive arith : Set :=
|
||||
| Const (n : nat)
|
||||
| Var (x : var)
|
||||
| Plus (e1 e2 : arith)
|
||||
| Minus (e1 e2 : arith)
|
||||
| Times (e1 e2 : arith).
|
||||
|
||||
Definition valuation := fmap var nat.
|
||||
|
||||
Fixpoint interp (e : arith) (v : valuation) : nat :=
|
||||
match e with
|
||||
| Const n => n
|
||||
| Var x =>
|
||||
match v $? x with
|
||||
| None => 0
|
||||
| Some n => n
|
||||
end
|
||||
| Plus e1 e2 => interp e1 v + interp e2 v
|
||||
| Minus e1 e2 => interp e1 v - interp e2 v
|
||||
| Times e1 e2 => interp e1 v * interp e2 v
|
||||
end.
|
||||
|
||||
Inductive cmd :=
|
||||
| Skip
|
||||
| Assign (x : var) (e : arith)
|
||||
| Sequence (c1 c2 : cmd)
|
||||
| Repeat (e : arith) (body : cmd).
|
||||
|
||||
Fixpoint selfCompose {A} (f : A -> A) (n : nat) : A -> A :=
|
||||
match n with
|
||||
| O => fun x => x
|
||||
| S n' => fun x => selfCompose f n' (f x)
|
||||
end.
|
||||
|
||||
Lemma selfCompose_extensional : forall {A} (f g : A -> A) n x,
|
||||
(forall y, f y = g y)
|
||||
-> selfCompose f n x = selfCompose g n x.
|
||||
Proof.
|
||||
induct n; simplify; try equality.
|
||||
|
||||
rewrite H.
|
||||
apply IHn.
|
||||
trivial.
|
||||
Qed.
|
||||
|
||||
Fixpoint exec (c : cmd) (v : valuation) : valuation :=
|
||||
match c with
|
||||
| Skip => v
|
||||
| Assign x e => v $+ (x, interp e v)
|
||||
| Sequence c1 c2 => exec c2 (exec c1 v)
|
||||
| Repeat e body => selfCompose (exec body) (interp e v) v
|
||||
end.
|
||||
|
||||
Fixpoint seqself (c : cmd) (n : nat) : cmd :=
|
||||
match n with
|
||||
| O => Skip
|
||||
| S n' => Sequence c (seqself c n')
|
||||
end.
|
||||
|
||||
(* Now consider a more abstract way of describing optimizations concisely. *)
|
||||
|
||||
Record rule := {
|
||||
OnCommand : cmd -> cmd;
|
||||
OnExpression : arith -> arith
|
||||
}.
|
||||
|
||||
Fixpoint bottomUp (r : rule) (c : cmd) : cmd :=
|
||||
match c with
|
||||
| Skip => r.(OnCommand) Skip
|
||||
| Assign x e => r.(OnCommand) (Assign x (r.(OnExpression) e))
|
||||
| Sequence c1 c2 => r.(OnCommand) (Sequence (bottomUp r c1) (bottomUp r c2))
|
||||
| Repeat e body => r.(OnCommand) (Repeat (r.(OnExpression) e) (bottomUp r body))
|
||||
end.
|
||||
|
||||
Definition crule (f : cmd -> cmd) : rule :=
|
||||
{| OnCommand := f; OnExpression := fun e => e |}.
|
||||
Definition erule (f : arith -> arith) : rule :=
|
||||
{| OnCommand := fun c => c; OnExpression := f |}.
|
||||
Definition andThen (r1 r2 : rule) : rule :=
|
||||
{| OnCommand := compose r2.(OnCommand) r1.(OnCommand);
|
||||
OnExpression := compose r2.(OnExpression) r1.(OnExpression) |}.
|
||||
|
||||
Definition plus0 := erule (fun e =>
|
||||
match e with
|
||||
| Plus e' (Const 0) => e'
|
||||
| _ => e
|
||||
end).
|
||||
Definition unrollLoops := crule (fun c =>
|
||||
match c with
|
||||
| Repeat (Const n) body => seqself body n
|
||||
| _ => c
|
||||
end).
|
||||
|
||||
Compute bottomUp plus0
|
||||
(Sequence (Assign "x" (Plus (Var "x") (Const 0)))
|
||||
(Assign "y" (Var "x"))).
|
||||
|
||||
Compute bottomUp unrollLoops
|
||||
(Repeat (Plus (Const 2) (Const 0))
|
||||
(Sequence (Assign "x" (Plus (Var "x") (Const 0)))
|
||||
(Assign "y" (Var "x")))).
|
||||
|
||||
Compute bottomUp (andThen plus0 unrollLoops)
|
||||
(Repeat (Plus (Const 2) (Const 0))
|
||||
(Sequence (Assign "x" (Plus (Var "x") (Const 0)))
|
||||
(Assign "y" (Var "x")))).
|
||||
|
||||
Definition correct (r : rule) :=
|
||||
(forall c v, exec (r.(OnCommand) c) v = exec c v)
|
||||
/\ (forall e v, interp (r.(OnExpression) e) v = interp e v).
|
||||
|
||||
Theorem crule_correct : forall f,
|
||||
(forall c v, exec (f c) v = exec c v)
|
||||
-> correct (crule f).
|
||||
Proof.
|
||||
first_order.
|
||||
Qed.
|
||||
|
||||
Theorem erule_correct : forall f,
|
||||
(forall e v, interp (f e) v = interp e v)
|
||||
-> correct (erule f).
|
||||
Proof.
|
||||
first_order.
|
||||
Qed.
|
||||
|
||||
Theorem andThen_correct : forall r1 r2,
|
||||
correct r1
|
||||
-> correct r2
|
||||
-> correct (andThen r1 r2).
|
||||
Proof.
|
||||
unfold andThen; first_order; simplify; eauto using eq_trans.
|
||||
Qed.
|
||||
|
||||
Theorem bottomUp_correct : forall r,
|
||||
correct r
|
||||
-> forall c v, exec (bottomUp r c) v = exec c v.
|
||||
Proof.
|
||||
unfold correct; induct c; simplify; propositional.
|
||||
|
||||
rewrite H0.
|
||||
trivial.
|
||||
|
||||
rewrite H0.
|
||||
simplify.
|
||||
equality.
|
||||
|
||||
rewrite H0.
|
||||
simplify.
|
||||
equality.
|
||||
|
||||
rewrite H0.
|
||||
simplify.
|
||||
rewrite H1.
|
||||
apply selfCompose_extensional.
|
||||
trivial.
|
||||
Qed.
|
||||
|
||||
Definition rBottomUp (r : rule) : rule :=
|
||||
{| OnCommand := bottomUp r;
|
||||
OnExpression := r.(OnExpression) |}.
|
||||
|
||||
Theorem rBottomUp_correct : forall r,
|
||||
correct r
|
||||
-> correct (rBottomUp r).
|
||||
Proof.
|
||||
unfold correct; simplify; propositional.
|
||||
apply bottomUp_correct.
|
||||
unfold correct; propositional.
|
||||
Qed.
|
||||
|
||||
Definition zzz := Assign "x" (Plus (Plus (Plus (Var "x") (Const 0)) (Const 0)) (Const 0)).
|
||||
|
||||
Compute bottomUp plus0 zzz.
|
||||
Compute bottomUp (rBottomUp plus0) zzz.
|
||||
Compute bottomUp (rBottomUp (rBottomUp plus0)) zzz.
|
||||
Compute bottomUp (rBottomUp (rBottomUp (rBottomUp plus0))) zzz.
|
||||
|
||||
|
||||
(** * Motivating continuations with search problems *)
|
||||
|
||||
(* We're getting into advanced material here, so it may often make sense to stop
|
||||
|
|
Loading…
Reference in a new issue