mirror of
https://github.com/achlipala/frap.git
synced 2025-01-20 21:46:11 +00:00
Start ModelChecking code: checked [factorial_sys]
This commit is contained in:
parent
c3182f3007
commit
c88ae6d484
3 changed files with 230 additions and 5 deletions
211
ModelChecking.v
Normal file
211
ModelChecking.v
Normal file
|
@ -0,0 +1,211 @@
|
|||
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
|
||||
* Chapter 5: Model Checking
|
||||
* Author: Adam Chlipala
|
||||
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
|
||||
|
||||
Require Import Frap TransitionSystems.
|
||||
|
||||
Set Implicit Arguments.
|
||||
|
||||
|
||||
Definition oneStepClosure_current {state} (sys : trsys state)
|
||||
(invariant1 invariant2 : state -> Prop) :=
|
||||
forall st, invariant1 st
|
||||
-> invariant2 st.
|
||||
|
||||
Definition oneStepClosure_new {state} (sys : trsys state)
|
||||
(invariant1 invariant2 : state -> Prop) :=
|
||||
forall st st', invariant1 st
|
||||
-> sys.(Step) st st'
|
||||
-> invariant2 st'.
|
||||
|
||||
Definition oneStepClosure {state} (sys : trsys state)
|
||||
(invariant1 invariant2 : state -> Prop) :=
|
||||
oneStepClosure_current sys invariant1 invariant2
|
||||
/\ oneStepClosure_new sys invariant1 invariant2.
|
||||
|
||||
Theorem prove_oneStepClosure : forall state (sys : trsys state) (inv1 inv2 : state -> Prop),
|
||||
(forall st, inv1 st -> inv2 st)
|
||||
-> (forall st st', inv1 st -> sys.(Step) st st' -> inv2 st')
|
||||
-> oneStepClosure sys inv1 inv2.
|
||||
Proof.
|
||||
unfold oneStepClosure.
|
||||
propositional.
|
||||
Qed.
|
||||
|
||||
Theorem oneStepClosure_done : forall state (sys : trsys state) (invariant : state -> Prop),
|
||||
(forall st, sys.(Initial) st -> invariant st)
|
||||
-> oneStepClosure sys invariant invariant
|
||||
-> invariantFor sys invariant.
|
||||
Proof.
|
||||
unfold oneStepClosure, oneStepClosure_current, oneStepClosure_new.
|
||||
propositional.
|
||||
apply invariant_induction.
|
||||
assumption.
|
||||
simplify.
|
||||
eapply H2.
|
||||
eassumption.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Inductive multiStepClosure {state} (sys : trsys state)
|
||||
: (state -> Prop) -> (state -> Prop) -> Prop :=
|
||||
| MscDone : forall inv,
|
||||
oneStepClosure sys inv inv
|
||||
-> multiStepClosure sys inv inv
|
||||
| MscStep : forall inv inv' inv'',
|
||||
oneStepClosure sys inv inv'
|
||||
-> multiStepClosure sys inv' inv''
|
||||
-> multiStepClosure sys inv inv''.
|
||||
|
||||
Lemma multiStepClosure_ok' : forall state (sys : trsys state) (inv inv' : state -> Prop),
|
||||
multiStepClosure sys inv inv'
|
||||
-> (forall st, sys.(Initial) st -> inv st)
|
||||
-> invariantFor sys inv'.
|
||||
Proof.
|
||||
induct 1; simplify.
|
||||
|
||||
apply oneStepClosure_done.
|
||||
assumption.
|
||||
assumption.
|
||||
|
||||
apply IHmultiStepClosure.
|
||||
simplify.
|
||||
unfold oneStepClosure, oneStepClosure_current in *. (* <-- *)
|
||||
propositional.
|
||||
apply H3.
|
||||
apply H1.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Theorem multiStepClosure_ok : forall state (sys : trsys state) (inv : state -> Prop),
|
||||
multiStepClosure sys sys.(Initial) inv
|
||||
-> invariantFor sys inv.
|
||||
Proof.
|
||||
simplify.
|
||||
eapply multiStepClosure_ok'.
|
||||
eassumption.
|
||||
propositional.
|
||||
Qed.
|
||||
|
||||
Theorem oneStepClosure_empty : forall state (sys : trsys state),
|
||||
oneStepClosure sys (constant nil) (constant nil).
|
||||
Proof.
|
||||
unfold oneStepClosure, oneStepClosure_current, oneStepClosure_new; propositional.
|
||||
Qed.
|
||||
|
||||
Theorem oneStepClosure_split : forall state (sys : trsys state) st sts (inv1 inv2 : state -> Prop),
|
||||
(forall st', sys.(Step) st st' -> inv1 st')
|
||||
-> oneStepClosure sys (constant sts) inv2
|
||||
-> oneStepClosure sys (constant (st :: sts)) ({st} \cup inv1 \cup inv2).
|
||||
Proof.
|
||||
unfold oneStepClosure, oneStepClosure_current, oneStepClosure_new; propositional.
|
||||
|
||||
invert H0.
|
||||
|
||||
left.
|
||||
left.
|
||||
simplify.
|
||||
propositional.
|
||||
|
||||
right.
|
||||
apply H1.
|
||||
assumption.
|
||||
|
||||
simplify.
|
||||
propositional.
|
||||
|
||||
left.
|
||||
right.
|
||||
apply H.
|
||||
equality.
|
||||
|
||||
right.
|
||||
eapply H2.
|
||||
eassumption.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Definition fact_correct (original_input : nat) (st : fact_state) : Prop :=
|
||||
match st with
|
||||
| AnswerIs ans => fact original_input = ans
|
||||
| WithAccumulator _ _ => True
|
||||
end.
|
||||
|
||||
Theorem fact_init_is : forall original_input,
|
||||
fact_init original_input = {WithAccumulator original_input 1}.
|
||||
Proof.
|
||||
simplify.
|
||||
apply sets_equal; simplify.
|
||||
propositional.
|
||||
|
||||
invert H.
|
||||
equality.
|
||||
|
||||
rewrite <- H0.
|
||||
constructor.
|
||||
Qed.
|
||||
|
||||
Theorem singleton_in : forall {A} (x : A),
|
||||
{x} x.
|
||||
Proof.
|
||||
simplify.
|
||||
equality.
|
||||
Qed.
|
||||
|
||||
Theorem factorial_ok_2 :
|
||||
invariantFor (factorial_sys 2) (fact_correct 2).
|
||||
Proof.
|
||||
simplify.
|
||||
eapply invariantFor_weaken.
|
||||
|
||||
apply multiStepClosure_ok.
|
||||
simplify.
|
||||
rewrite fact_init_is.
|
||||
|
||||
eapply MscStep.
|
||||
apply oneStepClosure_split; simplify.
|
||||
invert H; simplify.
|
||||
apply singleton_in.
|
||||
apply oneStepClosure_empty.
|
||||
simplify.
|
||||
|
||||
eapply MscStep.
|
||||
apply oneStepClosure_split; simplify.
|
||||
invert H; simplify.
|
||||
apply singleton_in.
|
||||
apply oneStepClosure_split; simplify.
|
||||
invert H; simplify.
|
||||
apply singleton_in.
|
||||
apply oneStepClosure_empty.
|
||||
simplify.
|
||||
|
||||
eapply MscStep.
|
||||
apply oneStepClosure_split; simplify.
|
||||
invert H; simplify.
|
||||
apply singleton_in.
|
||||
apply oneStepClosure_split; simplify.
|
||||
invert H; simplify.
|
||||
apply singleton_in.
|
||||
apply oneStepClosure_split; simplify.
|
||||
invert H; simplify.
|
||||
apply singleton_in.
|
||||
apply oneStepClosure_split; simplify.
|
||||
invert H; simplify.
|
||||
apply singleton_in.
|
||||
apply oneStepClosure_empty.
|
||||
simplify.
|
||||
|
||||
apply MscDone.
|
||||
apply prove_oneStepClosure; simplify.
|
||||
propositional.
|
||||
propositional; invert H0; try equality.
|
||||
invert H; equality.
|
||||
invert H1; equality.
|
||||
invert H; equality.
|
||||
invert H; try equality.
|
||||
|
||||
simplify.
|
||||
propositional; subst; simplify; propositional.
|
||||
(* ^-- *)
|
||||
Qed.
|
11
Sets.v
11
Sets.v
|
@ -112,6 +112,17 @@ Section properties.
|
|||
specialize (H1 x0).
|
||||
tauto.
|
||||
Qed.
|
||||
|
||||
Variables ss1 ss2 : list A.
|
||||
|
||||
Theorem union_constant : constant ss1 \cup constant ss2 = constant (ss1 ++ ss2).
|
||||
Proof.
|
||||
unfold constant, union; simpl.
|
||||
|
||||
apply sets_equal; simpl; intuition.
|
||||
Qed.
|
||||
End properties.
|
||||
|
||||
Hint Resolve subseteq_refl subseteq_In.
|
||||
|
||||
Hint Rewrite union_constant.
|
||||
|
|
|
@ -190,6 +190,8 @@ Lemma invariant_induction' : forall {state} (sys : trsys state)
|
|||
-> invariant s'.
|
||||
Proof.
|
||||
induct 2; propositional.
|
||||
(* [propositional]: simplify the goal according to the rules of propositional
|
||||
* logic. *)
|
||||
|
||||
apply IHtrc.
|
||||
eapply H.
|
||||
|
@ -647,13 +649,13 @@ Qed.
|
|||
* a more general fact, about when one invariant implies another. *)
|
||||
Theorem invariantFor_weaken : forall {state} (sys : trsys state)
|
||||
(invariant1 invariant2 : state -> Prop),
|
||||
(forall s, invariant1 s -> invariant2 s)
|
||||
-> invariantFor sys invariant1
|
||||
invariantFor sys invariant1
|
||||
-> (forall s, invariant1 s -> invariant2 s)
|
||||
-> invariantFor sys invariant2.
|
||||
Proof.
|
||||
unfold invariantFor; simplify.
|
||||
apply H.
|
||||
eapply H0.
|
||||
apply H0.
|
||||
eapply H.
|
||||
eassumption.
|
||||
assumption.
|
||||
Qed.
|
||||
|
@ -676,6 +678,8 @@ Proof.
|
|||
(* Note the use of a [with] clause to specify a quantified variable's
|
||||
* value. *)
|
||||
|
||||
apply increment2_invariant_ok.
|
||||
|
||||
simplify.
|
||||
invert H0.
|
||||
unfold increment2_right_answer; simplify.
|
||||
|
@ -685,6 +689,5 @@ Proof.
|
|||
simplify.
|
||||
equality.
|
||||
|
||||
apply increment2_invariant_ok.
|
||||
assumption.
|
||||
Qed.
|
||||
|
|
Loading…
Reference in a new issue