mirror of
https://github.com/achlipala/frap.git
synced 2024-11-10 08:17:52 +00:00
the few keystrokes saved by using a Coercion from action
to label is not worth the confusion it creates for students during proofs
This commit is contained in:
parent
6a1e7fa644
commit
ceddf6d6e4
1 changed files with 18 additions and 21 deletions
|
@ -118,9 +118,6 @@ Inductive label :=
|
||||||
| Silent
|
| Silent
|
||||||
| Action (a : action).
|
| Action (a : action).
|
||||||
|
|
||||||
(* This command lets us use [action]s implicitly as [label]s. *)
|
|
||||||
Coercion Action : action >-> label.
|
|
||||||
|
|
||||||
(* This predicate captures when a label doesn't use a channel. *)
|
(* This predicate captures when a label doesn't use a channel. *)
|
||||||
Definition notUse (ch : channel) (l : label) :=
|
Definition notUse (ch : channel) (l : label) :=
|
||||||
match l with
|
match l with
|
||||||
|
@ -138,11 +135,11 @@ Inductive lstep : proc -> label -> proc -> Prop :=
|
||||||
* we get to shortly. *)
|
* we get to shortly. *)
|
||||||
| LStepSend : forall ch {A : Type} (v : A) k,
|
| LStepSend : forall ch {A : Type} (v : A) k,
|
||||||
lstep (Send ch v k)
|
lstep (Send ch v k)
|
||||||
(Output {| Channel := ch; Value := v |})
|
(Action (Output {| Channel := ch; Value := v |}))
|
||||||
k
|
k
|
||||||
| LStepRecv : forall ch {A : Type} (k : A -> _) v,
|
| LStepRecv : forall ch {A : Type} (k : A -> _) v,
|
||||||
lstep (Recv ch k)
|
lstep (Recv ch k)
|
||||||
(Input {| Channel := ch; Value := v |})
|
(Action (Input {| Channel := ch; Value := v |}))
|
||||||
(k v)
|
(k v)
|
||||||
|
|
||||||
(* A [Dup] always has the option of replicating itself further. *)
|
(* A [Dup] always has the option of replicating itself further. *)
|
||||||
|
@ -178,12 +175,12 @@ Inductive lstep : proc -> label -> proc -> Prop :=
|
||||||
* exchanged. This is the only mechanism to let two transitions happen at
|
* exchanged. This is the only mechanism to let two transitions happen at
|
||||||
* once. *)
|
* once. *)
|
||||||
| LStepRendezvousLeft : forall pr1 ch {A : Type} (v : A) pr1' pr2 pr2',
|
| LStepRendezvousLeft : forall pr1 ch {A : Type} (v : A) pr1' pr2 pr2',
|
||||||
lstep pr1 (Input {| Channel := ch; Value := v |}) pr1'
|
lstep pr1 (Action (Input {| Channel := ch; Value := v |})) pr1'
|
||||||
-> lstep pr2 (Output {| Channel := ch; Value := v |}) pr2'
|
-> lstep pr2 (Action (Output {| Channel := ch; Value := v |})) pr2'
|
||||||
-> lstep (Par pr1 pr2) Silent (Par pr1' pr2')
|
-> lstep (Par pr1 pr2) Silent (Par pr1' pr2')
|
||||||
| LStepRendezvousRight : forall pr1 ch {A : Type} (v : A) pr1' pr2 pr2',
|
| LStepRendezvousRight : forall pr1 ch {A : Type} (v : A) pr1' pr2 pr2',
|
||||||
lstep pr1 (Output {| Channel := ch; Value := v |}) pr1'
|
lstep pr1 (Action (Output {| Channel := ch; Value := v |})) pr1'
|
||||||
-> lstep pr2 (Input {| Channel := ch; Value := v |}) pr2'
|
-> lstep pr2 (Action (Input {| Channel := ch; Value := v |})) pr2'
|
||||||
-> lstep (Par pr1 pr2) Silent (Par pr1' pr2').
|
-> lstep (Par pr1 pr2) Silent (Par pr1' pr2').
|
||||||
|
|
||||||
(* Here's a shorthand for silent steps. *)
|
(* Here's a shorthand for silent steps. *)
|
||||||
|
@ -296,7 +293,7 @@ Qed.
|
||||||
* more. ;-) *)
|
* more. ;-) *)
|
||||||
|
|
||||||
Lemma invert_Recv : forall ch (A : Type) (k : A -> proc) (x : A) pr,
|
Lemma invert_Recv : forall ch (A : Type) (k : A -> proc) (x : A) pr,
|
||||||
lstep (Recv ch k) (Input {| Channel := ch; Value := x |}) pr
|
lstep (Recv ch k) (Action (Input {| Channel := ch; Value := x |})) pr
|
||||||
-> pr = k x.
|
-> pr = k x.
|
||||||
Proof.
|
Proof.
|
||||||
invert 1; auto.
|
invert 1; auto.
|
||||||
|
@ -814,15 +811,15 @@ Proof.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Lemma notUse_Input_Output : forall ch r,
|
Lemma notUse_Input_Output : forall ch r,
|
||||||
notUse ch (Input r)
|
notUse ch (Action (Input r))
|
||||||
-> notUse ch (Output r).
|
-> notUse ch (Action (Output r)).
|
||||||
Proof.
|
Proof.
|
||||||
simplify; auto.
|
simplify; auto.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Lemma notUse_Output_Input : forall ch r,
|
Lemma notUse_Output_Input : forall ch r,
|
||||||
notUse ch (Output r)
|
notUse ch (Action (Output r))
|
||||||
-> notUse ch (Input r).
|
-> notUse ch (Action (Input r)).
|
||||||
Proof.
|
Proof.
|
||||||
simplify; auto.
|
simplify; auto.
|
||||||
Qed.
|
Qed.
|
||||||
|
@ -1194,7 +1191,7 @@ Hint Constructors manyOf manyOfAndOneOf Rhandoff.
|
||||||
Lemma manyOf_action : forall this pr,
|
Lemma manyOf_action : forall this pr,
|
||||||
manyOf this pr
|
manyOf this pr
|
||||||
-> forall a pr', lstep pr (Action a) pr'
|
-> forall a pr', lstep pr (Action a) pr'
|
||||||
-> exists this', lstep this a this'.
|
-> exists this', lstep this (Action a) this'.
|
||||||
Proof.
|
Proof.
|
||||||
induct 1; simplify; eauto.
|
induct 1; simplify; eauto.
|
||||||
invert H.
|
invert H.
|
||||||
|
@ -1202,7 +1199,7 @@ Proof.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Lemma manyOf_silent : forall this, (forall this', lstepSilent this this' -> False)
|
Lemma manyOf_silent : forall this, (forall this', lstepSilent this this' -> False)
|
||||||
-> (forall r this', lstep this (Output r) this' -> False)
|
-> (forall r this', lstep this (Action (Output r)) this' -> False)
|
||||||
-> forall pr, manyOf this pr
|
-> forall pr, manyOf this pr
|
||||||
-> forall pr', lstep pr Silent pr'
|
-> forall pr', lstep pr Silent pr'
|
||||||
-> manyOf this pr'.
|
-> manyOf this pr'.
|
||||||
|
@ -1217,7 +1214,7 @@ Qed.
|
||||||
|
|
||||||
Lemma manyOf_rendezvous : forall ch (A : Type) (v : A) (k : A -> _) pr,
|
Lemma manyOf_rendezvous : forall ch (A : Type) (v : A) (k : A -> _) pr,
|
||||||
manyOf (Recv ch k) pr
|
manyOf (Recv ch k) pr
|
||||||
-> forall pr', lstep pr (Input {| Channel := ch; Value := v |}) pr'
|
-> forall pr', lstep pr (Action (Input {| Channel := ch; Value := v |})) pr'
|
||||||
-> manyOfAndOneOf (Recv ch k) (k v) pr'.
|
-> manyOfAndOneOf (Recv ch k) (k v) pr'.
|
||||||
Proof.
|
Proof.
|
||||||
induct 1; simplify; eauto.
|
induct 1; simplify; eauto.
|
||||||
|
@ -1233,8 +1230,8 @@ Hint Resolve manyOf_silent manyOf_rendezvous.
|
||||||
|
|
||||||
Lemma manyOfAndOneOf_output : forall ch (A : Type) (k : A -> _) rest ch0 (A0 : Type) (v0 : A0) pr,
|
Lemma manyOfAndOneOf_output : forall ch (A : Type) (k : A -> _) rest ch0 (A0 : Type) (v0 : A0) pr,
|
||||||
manyOfAndOneOf (Recv ch k) rest pr
|
manyOfAndOneOf (Recv ch k) rest pr
|
||||||
-> forall pr', lstep pr (Output {| Channel := ch0; Value := v0 |}) pr'
|
-> forall pr', lstep pr (Action (Output {| Channel := ch0; Value := v0 |})) pr'
|
||||||
-> exists rest', lstep rest (Output {| Channel := ch0; Value := v0 |}) rest'
|
-> exists rest', lstep rest (Action (Output {| Channel := ch0; Value := v0 |})) rest'
|
||||||
/\ manyOfAndOneOf (Recv ch k) rest' pr'.
|
/\ manyOfAndOneOf (Recv ch k) rest' pr'.
|
||||||
Proof.
|
Proof.
|
||||||
induct 1; simplify; eauto.
|
induct 1; simplify; eauto.
|
||||||
|
@ -1267,7 +1264,7 @@ Hint Resolve manyOf_manyOfAndOneOf.
|
||||||
|
|
||||||
Lemma no_rendezvous : forall ch0 (A0 : Type) (v : A0) pr1 rest (k : A0 -> _),
|
Lemma no_rendezvous : forall ch0 (A0 : Type) (v : A0) pr1 rest (k : A0 -> _),
|
||||||
manyOfAndOneOf (??ch0 (x : _); k x) rest pr1
|
manyOfAndOneOf (??ch0 (x : _); k x) rest pr1
|
||||||
-> forall pr1', lstep pr1 (Output {| Channel := ch0; TypeOf := A0; Value := v |}) pr1'
|
-> forall pr1', lstep pr1 (Action (Output {| Channel := ch0; TypeOf := A0; Value := v |})) pr1'
|
||||||
-> neverUses ch0 rest
|
-> neverUses ch0 rest
|
||||||
-> False.
|
-> False.
|
||||||
Proof.
|
Proof.
|
||||||
|
@ -1345,7 +1342,7 @@ Lemma manyOfAndOneOf_action : forall ch (A : Type) (k : A -> _) rest pr,
|
||||||
-> forall a pr', lstep pr (Action a) pr'
|
-> forall a pr', lstep pr (Action a) pr'
|
||||||
-> (exists v : A, a = Input {| Channel := ch; Value := v |})
|
-> (exists v : A, a = Input {| Channel := ch; Value := v |})
|
||||||
\/ exists rest', manyOfAndOneOf (Recv ch k) rest' pr'
|
\/ exists rest', manyOfAndOneOf (Recv ch k) rest' pr'
|
||||||
/\ lstep rest a rest'.
|
/\ lstep rest (Action a) rest'.
|
||||||
Proof.
|
Proof.
|
||||||
induct 1; simplify; eauto.
|
induct 1; simplify; eauto.
|
||||||
invert H; eauto.
|
invert H; eauto.
|
||||||
|
|
Loading…
Reference in a new issue