mirror of
https://github.com/achlipala/frap.git
synced 2025-01-08 17:14:14 +00:00
Start code for new RuleInduction chapter, up through permutation
This commit is contained in:
parent
757999b52d
commit
cf7d27417d
2 changed files with 220 additions and 0 deletions
219
RuleInduction.v
Normal file
219
RuleInduction.v
Normal file
|
@ -0,0 +1,219 @@
|
|||
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
|
||||
* New chapter: inductive relations and rule induction
|
||||
* Author: Adam Chlipala
|
||||
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
|
||||
|
||||
Require Import Frap.
|
||||
|
||||
|
||||
(** * Finite sets as inductive predicates *)
|
||||
|
||||
Inductive my_favorite_numbers : nat -> Prop :=
|
||||
| ILike17 : my_favorite_numbers 17
|
||||
| ILike23 : my_favorite_numbers 23
|
||||
| ILike42 : my_favorite_numbers 42.
|
||||
|
||||
Check my_favorite_numbers_ind.
|
||||
|
||||
Theorem favorites_below_50 : forall n, my_favorite_numbers n -> n < 50.
|
||||
Proof.
|
||||
simplify.
|
||||
invert H.
|
||||
linear_arithmetic.
|
||||
linear_arithmetic.
|
||||
linear_arithmetic.
|
||||
Qed.
|
||||
|
||||
|
||||
(** * Transitive closure of relations *)
|
||||
|
||||
Inductive tc {A} (R : A -> A -> Prop) : A -> A -> Prop :=
|
||||
| TcBase : forall x y, R x y -> tc R x y
|
||||
| TcTrans : forall x y z, tc R x y -> tc R y z -> tc R x z.
|
||||
|
||||
(** ** Less-than reimagined *)
|
||||
|
||||
Definition oneApart (n m : nat) : Prop :=
|
||||
n + 1 = m.
|
||||
|
||||
Definition lt' : nat -> nat -> Prop := tc oneApart.
|
||||
|
||||
Theorem lt'_lt : forall n m, lt' n m -> n < m.
|
||||
Proof.
|
||||
induct 1.
|
||||
|
||||
unfold oneApart in H.
|
||||
linear_arithmetic.
|
||||
|
||||
linear_arithmetic.
|
||||
Qed.
|
||||
|
||||
Lemma lt'_O_S : forall m, lt' 0 (S m).
|
||||
Proof.
|
||||
induct m; simplify.
|
||||
|
||||
apply TcBase.
|
||||
unfold oneApart.
|
||||
linear_arithmetic.
|
||||
|
||||
apply TcTrans with (S m).
|
||||
assumption.
|
||||
apply TcBase.
|
||||
unfold oneApart.
|
||||
linear_arithmetic.
|
||||
Qed.
|
||||
|
||||
Lemma lt_lt'' : forall n k, lt' n (S k + n).
|
||||
Proof.
|
||||
induct k; simplify.
|
||||
|
||||
apply TcBase.
|
||||
unfold oneApart.
|
||||
linear_arithmetic.
|
||||
|
||||
apply TcTrans with (S (k + n)).
|
||||
assumption.
|
||||
apply TcBase.
|
||||
unfold oneApart.
|
||||
linear_arithmetic.
|
||||
Qed.
|
||||
|
||||
Theorem lt_lt' : forall n m, n < m -> lt' n m.
|
||||
Proof.
|
||||
simplify.
|
||||
replace m with (S (m - n - 1) + n) by linear_arithmetic.
|
||||
apply lt_lt''.
|
||||
Qed.
|
||||
|
||||
(** ** Transitive closure is idempotent. *)
|
||||
|
||||
Theorem tc_tc2 : forall A (R : A -> A -> Prop) x y, tc R x y -> tc (tc R) x y.
|
||||
Proof.
|
||||
induct 1.
|
||||
|
||||
apply TcBase.
|
||||
apply TcBase.
|
||||
assumption.
|
||||
|
||||
apply TcTrans with y.
|
||||
assumption.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Theorem tc2_tc : forall A (R : A -> A -> Prop) x y, tc (tc R) x y -> tc R x y.
|
||||
Proof.
|
||||
induct 1.
|
||||
|
||||
assumption.
|
||||
|
||||
apply TcTrans with y.
|
||||
assumption.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
|
||||
(** * Permutation *)
|
||||
|
||||
(* Lifted from the Coq standard library: *)
|
||||
Inductive Permutation {A} : list A -> list A -> Prop :=
|
||||
| perm_nil :
|
||||
Permutation [] []
|
||||
| perm_skip : forall x l l',
|
||||
Permutation l l' -> Permutation (x::l) (x::l')
|
||||
| perm_swap : forall x y l,
|
||||
Permutation (y::x::l) (x::y::l)
|
||||
| perm_trans : forall l l' l'',
|
||||
Permutation l l' -> Permutation l' l'' -> Permutation l l''.
|
||||
|
||||
Lemma Permutation_to_front : forall A (a : A) (ls : list A),
|
||||
Permutation (a :: ls) (ls ++ [a]).
|
||||
Proof.
|
||||
induct ls; simplify.
|
||||
|
||||
apply perm_skip.
|
||||
apply perm_nil.
|
||||
|
||||
apply perm_trans with (a0 :: a :: ls).
|
||||
apply perm_swap.
|
||||
apply perm_skip.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Theorem Permutation_rev : forall A (ls : list A),
|
||||
Permutation ls (rev ls).
|
||||
Proof.
|
||||
induct ls; simplify.
|
||||
|
||||
apply perm_nil.
|
||||
|
||||
apply perm_trans with (a :: rev ls).
|
||||
apply perm_skip.
|
||||
assumption.
|
||||
apply Permutation_to_front.
|
||||
Qed.
|
||||
|
||||
Theorem Permutation_length : forall A (ls1 ls2 : list A),
|
||||
Permutation ls1 ls2 -> length ls1 = length ls2.
|
||||
Proof.
|
||||
induct 1; simplify.
|
||||
|
||||
equality.
|
||||
|
||||
equality.
|
||||
|
||||
equality.
|
||||
|
||||
equality.
|
||||
Qed.
|
||||
|
||||
Lemma Permutation_app' : forall A (ls ls1 ls2 : list A),
|
||||
Permutation ls1 ls2
|
||||
-> Permutation (ls ++ ls1) (ls ++ ls2).
|
||||
Proof.
|
||||
induct ls; simplify.
|
||||
|
||||
assumption.
|
||||
|
||||
apply perm_skip.
|
||||
apply IHls.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Lemma Permutation_refl : forall A (ls : list A),
|
||||
Permutation ls ls.
|
||||
Proof.
|
||||
induct ls.
|
||||
|
||||
apply perm_nil.
|
||||
|
||||
apply perm_skip.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Theorem Permutation_app : forall A (ls1 ls1' : list A),
|
||||
Permutation ls1 ls1'
|
||||
-> forall ls2 ls2', Permutation ls2 ls2'
|
||||
-> Permutation (ls1 ++ ls2) (ls1' ++ ls2').
|
||||
Proof.
|
||||
induct 1; simplify.
|
||||
|
||||
assumption.
|
||||
|
||||
apply perm_skip.
|
||||
apply IHPermutation.
|
||||
assumption.
|
||||
|
||||
apply perm_trans with (x :: y :: l ++ ls2).
|
||||
apply perm_swap.
|
||||
apply perm_skip.
|
||||
apply perm_skip.
|
||||
apply Permutation_app'.
|
||||
assumption.
|
||||
|
||||
apply perm_trans with (l' ++ ls2').
|
||||
apply IHPermutation1.
|
||||
assumption.
|
||||
apply IHPermutation2.
|
||||
|
||||
apply Permutation_refl.
|
||||
Qed.
|
|
@ -20,6 +20,7 @@ Interpreters_template.v
|
|||
Interpreters.v
|
||||
FirstClassFunctions_template.v
|
||||
FirstClassFunctions.v
|
||||
RuleInduction.v
|
||||
TransitionSystems_template.v
|
||||
TransitionSystems.v
|
||||
IntroToProofScripting.v
|
||||
|
|
Loading…
Reference in a new issue