mirror of
https://github.com/achlipala/frap.git
synced 2025-01-07 00:24:15 +00:00
More cleanup around addition of RuleInduction
This commit is contained in:
parent
890d7610d7
commit
d3c7a85b49
25 changed files with 651 additions and 31 deletions
|
@ -1,5 +1,5 @@
|
|||
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
|
||||
* Chapter 8: Abstract Interpretation and Dataflow Analysis
|
||||
* Chapter 9: Abstract Interpretation and Dataflow Analysis
|
||||
* Author: Adam Chlipala
|
||||
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
|
||||
* Chapter 9: Compiler Correctness
|
||||
* Chapter 10: Compiler Correctness
|
||||
* Author: Adam Chlipala
|
||||
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
|
||||
* Chapter 9: Compiler Correctness
|
||||
* Chapter 10: Compiler Correctness
|
||||
* Author: Adam Chlipala
|
||||
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
|
||||
* Chapter 18: Concurrent Separation Logic
|
||||
* Chapter 19: Concurrent Separation Logic
|
||||
* Author: Adam Chlipala
|
||||
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
|
||||
* Chapter 15: Connecting to Real-World Programming Languages and Platforms
|
||||
* Chapter 16: Connecting to Real-World Programming Languages and Platforms
|
||||
* Author: Adam Chlipala
|
||||
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
|
||||
* Chapter 13: Deep and Shallow Embeddings
|
||||
* Chapter 14: Deep and Shallow Embeddings
|
||||
* Author: Adam Chlipala
|
||||
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
|
||||
* Chapter 12: Hoare Logic: Verifying Imperative Programs
|
||||
* Chapter 13: Hoare Logic: Verifying Imperative Programs
|
||||
* Author: Adam Chlipala
|
||||
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
|
||||
* Chapter 10: Lambda Calculus and Simple Type Soundness
|
||||
* Chapter 11: Lambda Calculus and Simple Type Soundness
|
||||
* Author: Adam Chlipala
|
||||
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
|
||||
* Chapter 8: Lambda Calculus and Simple Type Soundness
|
||||
* Chapter 11: Lambda Calculus and Simple Type Soundness
|
||||
* Author: Adam Chlipala
|
||||
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
|
||||
* Chapter 19: Process Algebra and Behavioral Refinement
|
||||
* Chapter 20: Process Algebra and Behavioral Refinement
|
||||
* Author: Adam Chlipala
|
||||
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
|
||||
* Chapter 6: Model Checking
|
||||
* Chapter 7: Model Checking
|
||||
* Author: Adam Chlipala
|
||||
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
|
||||
* Chapter 5: Model Checking
|
||||
* Chapter 7: Model Checking
|
||||
* Author: Adam Chlipala
|
||||
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
|
||||
* Chapter 7: Operational Semantics
|
||||
* Chapter 8: Operational Semantics
|
||||
* Author: Adam Chlipala
|
||||
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
|
||||
* Chapter 6: Operational Semantics
|
||||
* Chapter 8: Operational Semantics
|
||||
* Author: Adam Chlipala
|
||||
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
|
||||
* Chapter 16: Deriving Programs from Specifications
|
||||
* Chapter 17: Deriving Programs from Specifications
|
||||
* Author: Adam Chlipala
|
||||
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/
|
||||
* Some material borrowed from Fiat <http://plv.csail.mit.edu/fiat/> *)
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
|
||||
* New chapter: inductive relations and rule induction
|
||||
* Chapter 5: inductive relations and rule induction
|
||||
* Author: Adam Chlipala
|
||||
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
|
||||
|
||||
|
|
617
RuleInduction_template.v
Normal file
617
RuleInduction_template.v
Normal file
|
@ -0,0 +1,617 @@
|
|||
Require Import Frap.
|
||||
|
||||
|
||||
(** * Finite sets as inductive predicates *)
|
||||
|
||||
Inductive my_favorite_numbers : nat -> Prop :=
|
||||
| ILike17 : my_favorite_numbers 17
|
||||
| ILike23 : my_favorite_numbers 23
|
||||
| ILike42 : my_favorite_numbers 42.
|
||||
|
||||
Check my_favorite_numbers_ind.
|
||||
|
||||
Theorem favorites_below_50 : forall n, my_favorite_numbers n -> n < 50.
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
|
||||
(** * Transitive closure of relations *)
|
||||
|
||||
Inductive tc {A} (R : A -> A -> Prop) : A -> A -> Prop :=
|
||||
| TcBase : forall x y, R x y -> tc R x y
|
||||
| TcTrans : forall x y z, tc R x y -> tc R y z -> tc R x z.
|
||||
|
||||
(** ** Less-than reimagined *)
|
||||
|
||||
Definition oneApart (n m : nat) : Prop :=
|
||||
n + 1 = m.
|
||||
|
||||
Definition lt' : nat -> nat -> Prop := tc oneApart.
|
||||
|
||||
Theorem lt'_lt : forall n m, lt' n m -> n < m.
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
Theorem lt_lt' : forall n m, n < m -> lt' n m.
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
(** ** Transitive closure is idempotent. *)
|
||||
|
||||
Theorem tc_tc2 : forall A (R : A -> A -> Prop) x y, tc R x y -> tc (tc R) x y.
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
Theorem tc2_tc : forall A (R : A -> A -> Prop) x y, tc (tc R) x y -> tc R x y.
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
|
||||
(** * Permutation *)
|
||||
|
||||
(* Lifted from the Coq standard library: *)
|
||||
Inductive Permutation {A} : list A -> list A -> Prop :=
|
||||
| perm_nil :
|
||||
Permutation [] []
|
||||
| perm_skip : forall x l l',
|
||||
Permutation l l' -> Permutation (x::l) (x::l')
|
||||
| perm_swap : forall x y l,
|
||||
Permutation (y::x::l) (x::y::l)
|
||||
| perm_trans : forall l l' l'',
|
||||
Permutation l l' -> Permutation l' l'' -> Permutation l l''.
|
||||
|
||||
Theorem Permutation_rev : forall A (ls : list A),
|
||||
Permutation ls (rev ls).
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
Theorem Permutation_length : forall A (ls1 ls2 : list A),
|
||||
Permutation ls1 ls2 -> length ls1 = length ls2.
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
Theorem Permutation_app : forall A (ls1 ls1' ls2 ls2' : list A),
|
||||
Permutation ls1 ls1'
|
||||
-> Permutation ls2 ls2'
|
||||
-> Permutation (ls1 ++ ls2) (ls1' ++ ls2').
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
|
||||
(** * Simple propositional logic *)
|
||||
|
||||
Inductive prop :=
|
||||
| Truth
|
||||
| Falsehood
|
||||
| And (p1 p2 : prop)
|
||||
| Or (p1 p2 : prop).
|
||||
|
||||
Inductive valid : prop -> Prop :=
|
||||
| ValidTruth :
|
||||
valid Truth
|
||||
| ValidAnd : forall p1 p2,
|
||||
valid p1
|
||||
-> valid p2
|
||||
-> valid (And p1 p2)
|
||||
| ValidOr1 : forall p1 p2,
|
||||
valid p1
|
||||
-> valid (Or p1 p2)
|
||||
| ValidOr2 : forall p1 p2,
|
||||
valid p2
|
||||
-> valid (Or p1 p2).
|
||||
|
||||
Fixpoint interp (p : prop) : Prop :=
|
||||
match p with
|
||||
| Truth => True
|
||||
| Falsehood => False
|
||||
| And p1 p2 => interp p1 /\ interp p2
|
||||
| Or p1 p2 => interp p1 \/ interp p2
|
||||
end.
|
||||
|
||||
Theorem interp_valid : forall p, interp p -> valid p.
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
Theorem valid_interp : forall p, valid p -> interp p.
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
Fixpoint commuter (p : prop) : prop :=
|
||||
match p with
|
||||
| Truth => Truth
|
||||
| Falsehood => Falsehood
|
||||
| And p1 p2 => And (commuter p2) (commuter p1)
|
||||
| Or p1 p2 => Or (commuter p2) (commuter p1)
|
||||
end.
|
||||
|
||||
Theorem valid_commuter_fwd : forall p, valid p -> valid (commuter p).
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
Theorem valid_commuter_bwd : forall p, valid (commuter p) -> valid p.
|
||||
Proof.
|
||||
Admitted.
|
||||
|
||||
|
||||
|
||||
(* Proofs for an extension I hope we'll get to:
|
||||
|
||||
Fixpoint interp (vars : var -> Prop) (p : prop) : Prop :=
|
||||
match p with
|
||||
| Truth => True
|
||||
| Falsehood => False
|
||||
| Var x => vars x
|
||||
| And p1 p2 => interp vars p1 /\ interp vars p2
|
||||
| Or p1 p2 => interp vars p1 \/ interp vars p2
|
||||
| Imply p1 p2 => interp vars p1 -> interp vars p2
|
||||
end.
|
||||
|
||||
Theorem valid_interp : forall vars hyps p,
|
||||
valid hyps p
|
||||
-> (forall h, hyps h -> interp vars h)
|
||||
-> interp vars p.
|
||||
Proof.
|
||||
induct 1; simplify.
|
||||
|
||||
apply H0.
|
||||
assumption.
|
||||
|
||||
propositional.
|
||||
|
||||
propositional.
|
||||
|
||||
propositional.
|
||||
|
||||
propositional.
|
||||
|
||||
propositional.
|
||||
|
||||
propositional.
|
||||
|
||||
propositional.
|
||||
|
||||
propositional.
|
||||
apply IHvalid2.
|
||||
propositional.
|
||||
equality.
|
||||
apply H2.
|
||||
assumption.
|
||||
apply IHvalid3.
|
||||
propositional.
|
||||
equality.
|
||||
apply H2.
|
||||
assumption.
|
||||
|
||||
apply IHvalid.
|
||||
propositional.
|
||||
equality.
|
||||
apply H0.
|
||||
assumption.
|
||||
|
||||
propositional.
|
||||
|
||||
excluded_middle (interp vars p); propositional.
|
||||
(* Note that use of excluded middle is a bit controversial in Coq,
|
||||
* and we'll generally be trying to avoid it,
|
||||
* but it helps enough with this example that we don't sweat the details. *)
|
||||
Qed.
|
||||
|
||||
Lemma valid_weaken : forall hyps1 p,
|
||||
valid hyps1 p
|
||||
-> forall hyps2 : prop -> Prop,
|
||||
(forall h, hyps1 h -> hyps2 h)
|
||||
-> valid hyps2 p.
|
||||
Proof.
|
||||
induct 1; simplify.
|
||||
|
||||
apply ValidHyp.
|
||||
apply H0.
|
||||
assumption.
|
||||
|
||||
apply ValidTruthIntro.
|
||||
|
||||
apply ValidFalsehoodElim.
|
||||
apply IHvalid.
|
||||
assumption.
|
||||
|
||||
apply ValidAndIntro.
|
||||
apply IHvalid1.
|
||||
assumption.
|
||||
apply IHvalid2.
|
||||
assumption.
|
||||
|
||||
apply ValidAndElim1 with p2.
|
||||
apply IHvalid.
|
||||
assumption.
|
||||
|
||||
apply ValidAndElim2 with p1.
|
||||
apply IHvalid.
|
||||
assumption.
|
||||
|
||||
apply ValidOrIntro1.
|
||||
apply IHvalid.
|
||||
assumption.
|
||||
|
||||
apply ValidOrIntro2.
|
||||
apply IHvalid.
|
||||
assumption.
|
||||
|
||||
apply ValidOrElim with p1 p2.
|
||||
apply IHvalid1.
|
||||
assumption.
|
||||
apply IHvalid2.
|
||||
first_order.
|
||||
apply IHvalid3.
|
||||
first_order.
|
||||
|
||||
apply ValidImplyIntro.
|
||||
apply IHvalid.
|
||||
propositional.
|
||||
right.
|
||||
apply H0.
|
||||
assumption.
|
||||
|
||||
apply ValidImplyElim with p1.
|
||||
apply IHvalid1.
|
||||
assumption.
|
||||
apply IHvalid2.
|
||||
assumption.
|
||||
|
||||
apply ValidExcludedMiddle.
|
||||
Qed.
|
||||
|
||||
Lemma valid_cut : forall hyps1 p p',
|
||||
valid hyps1 p
|
||||
-> forall hyps2, valid hyps2 p'
|
||||
-> (forall h, hyps1 h -> hyps2 h \/ h = p')
|
||||
-> valid hyps2 p.
|
||||
Proof.
|
||||
induct 1; simplify.
|
||||
|
||||
apply H1 in H.
|
||||
propositional.
|
||||
apply ValidHyp.
|
||||
assumption.
|
||||
equality.
|
||||
|
||||
apply ValidTruthIntro.
|
||||
|
||||
apply ValidFalsehoodElim.
|
||||
apply IHvalid; assumption.
|
||||
|
||||
apply ValidAndIntro.
|
||||
apply IHvalid1; assumption.
|
||||
apply IHvalid2; assumption.
|
||||
|
||||
apply ValidAndElim1 with p2.
|
||||
apply IHvalid; assumption.
|
||||
|
||||
apply ValidAndElim2 with p1.
|
||||
apply IHvalid; assumption.
|
||||
|
||||
apply ValidOrIntro1.
|
||||
apply IHvalid; assumption.
|
||||
|
||||
apply ValidOrIntro2.
|
||||
apply IHvalid; assumption.
|
||||
|
||||
apply ValidOrElim with p1 p2.
|
||||
apply IHvalid1; assumption.
|
||||
apply IHvalid2.
|
||||
apply valid_weaken with hyps2.
|
||||
assumption.
|
||||
propositional.
|
||||
first_order.
|
||||
apply IHvalid3.
|
||||
apply valid_weaken with hyps2.
|
||||
assumption.
|
||||
propositional.
|
||||
first_order.
|
||||
|
||||
apply ValidImplyIntro.
|
||||
apply IHvalid.
|
||||
apply valid_weaken with hyps2.
|
||||
assumption.
|
||||
propositional.
|
||||
first_order.
|
||||
|
||||
apply ValidImplyElim with p1.
|
||||
apply IHvalid1; assumption.
|
||||
apply IHvalid2; assumption.
|
||||
|
||||
apply ValidExcludedMiddle.
|
||||
Qed.
|
||||
|
||||
Fixpoint varsOf (p : prop) : list var :=
|
||||
match p with
|
||||
| Truth
|
||||
| Falsehood => []
|
||||
| Var x => [x]
|
||||
| And p1 p2
|
||||
| Or p1 p2
|
||||
| Imply p1 p2 => varsOf p1 ++ varsOf p2
|
||||
end.
|
||||
|
||||
Lemma interp_valid'' : forall p hyps,
|
||||
(forall x, In x (varsOf p) -> hyps (Var x) \/ hyps (Not (Var x)))
|
||||
-> (forall x, hyps (Var x) -> ~hyps (Not (Var x)))
|
||||
-> IF interp (fun x => hyps (Var x)) p
|
||||
then valid hyps p
|
||||
else valid hyps (Not p).
|
||||
Proof.
|
||||
induct p; unfold IF_then_else; simplify.
|
||||
|
||||
left; propositional.
|
||||
apply ValidTruthIntro.
|
||||
|
||||
right; propositional.
|
||||
apply ValidImplyIntro.
|
||||
apply ValidHyp.
|
||||
propositional.
|
||||
|
||||
specialize (H x); propositional.
|
||||
left; propositional.
|
||||
apply ValidHyp.
|
||||
assumption.
|
||||
right; first_order.
|
||||
apply ValidHyp.
|
||||
assumption.
|
||||
|
||||
excluded_middle (interp (fun x => hyps (Var x)) p1).
|
||||
excluded_middle (interp (fun x => hyps (Var x)) p2).
|
||||
left; propositional.
|
||||
apply ValidAndIntro.
|
||||
assert (IF interp (fun x : var => hyps (Var x)) p1 then valid hyps p1 else valid hyps (Not p1)).
|
||||
apply IHp1; propositional.
|
||||
apply H.
|
||||
apply in_or_app; propositional.
|
||||
unfold IF_then_else in H3; propositional.
|
||||
assert (IF interp (fun x : var => hyps (Var x)) p2 then valid hyps p2 else valid hyps (Not p2)).
|
||||
apply IHp2; propositional.
|
||||
apply H.
|
||||
apply in_or_app; propositional.
|
||||
unfold IF_then_else in H3; propositional.
|
||||
right; propositional.
|
||||
assert (IF interp (fun x : var => hyps (Var x)) p2 then valid hyps p2 else valid hyps (Not p2)).
|
||||
apply IHp2; propositional.
|
||||
apply H.
|
||||
apply in_or_app; propositional.
|
||||
unfold IF_then_else in H3; propositional.
|
||||
apply ValidImplyIntro.
|
||||
apply ValidImplyElim with p2.
|
||||
apply valid_weaken with hyps.
|
||||
assumption.
|
||||
propositional.
|
||||
apply ValidAndElim2 with p1.
|
||||
apply ValidHyp.
|
||||
propositional.
|
||||
right; propositional.
|
||||
assert (IF interp (fun x : var => hyps (Var x)) p1 then valid hyps p1 else valid hyps (Not p1)).
|
||||
apply IHp1; propositional.
|
||||
apply H.
|
||||
apply in_or_app; propositional.
|
||||
unfold IF_then_else in H2; propositional.
|
||||
apply ValidImplyIntro.
|
||||
apply ValidImplyElim with p1.
|
||||
apply valid_weaken with hyps.
|
||||
assumption.
|
||||
propositional.
|
||||
apply ValidAndElim1 with p2.
|
||||
apply ValidHyp.
|
||||
propositional.
|
||||
|
||||
excluded_middle (interp (fun x => hyps (Var x)) p1).
|
||||
left; propositional.
|
||||
apply ValidOrIntro1.
|
||||
assert (IF interp (fun x : var => hyps (Var x)) p1 then valid hyps p1 else valid hyps (Not p1)).
|
||||
apply IHp1; propositional.
|
||||
apply H.
|
||||
apply in_or_app; propositional.
|
||||
unfold IF_then_else in H2; propositional.
|
||||
excluded_middle (interp (fun x => hyps (Var x)) p2).
|
||||
left; propositional.
|
||||
apply ValidOrIntro2.
|
||||
assert (IF interp (fun x : var => hyps (Var x)) p2 then valid hyps p2 else valid hyps (Not p2)).
|
||||
apply IHp2; propositional.
|
||||
apply H.
|
||||
apply in_or_app; propositional.
|
||||
unfold IF_then_else in H3; propositional.
|
||||
right; propositional.
|
||||
apply ValidImplyIntro.
|
||||
apply ValidOrElim with p1 p2.
|
||||
apply ValidHyp.
|
||||
propositional.
|
||||
assert (IF interp (fun x : var => hyps (Var x)) p1 then valid hyps p1 else valid hyps (Not p1)).
|
||||
apply IHp1; propositional.
|
||||
apply H.
|
||||
apply in_or_app; propositional.
|
||||
unfold IF_then_else in H3; propositional.
|
||||
apply ValidImplyElim with p1.
|
||||
apply valid_weaken with hyps.
|
||||
assumption.
|
||||
propositional.
|
||||
apply ValidHyp.
|
||||
propositional.
|
||||
assert (IF interp (fun x : var => hyps (Var x)) p2 then valid hyps p2 else valid hyps (Not p2)).
|
||||
apply IHp2; propositional.
|
||||
apply H.
|
||||
apply in_or_app; propositional.
|
||||
unfold IF_then_else in H3; propositional.
|
||||
apply ValidImplyElim with p2.
|
||||
apply valid_weaken with hyps.
|
||||
assumption.
|
||||
propositional.
|
||||
apply ValidHyp.
|
||||
propositional.
|
||||
|
||||
excluded_middle (interp (fun x => hyps (Var x)) p1).
|
||||
excluded_middle (interp (fun x => hyps (Var x)) p2).
|
||||
left; propositional.
|
||||
apply ValidImplyIntro.
|
||||
assert (IF interp (fun x : var => hyps (Var x)) p2 then valid hyps p2 else valid hyps (Not p2)).
|
||||
apply IHp2; propositional.
|
||||
apply H.
|
||||
apply in_or_app; propositional.
|
||||
unfold IF_then_else in H3; propositional.
|
||||
apply valid_weaken with hyps.
|
||||
assumption.
|
||||
propositional.
|
||||
right; propositional.
|
||||
apply ValidImplyIntro.
|
||||
assert (IF interp (fun x : var => hyps (Var x)) p1 then valid hyps p1 else valid hyps (Not p1)).
|
||||
apply IHp1; propositional.
|
||||
apply H.
|
||||
apply in_or_app; propositional.
|
||||
unfold IF_then_else in H3; propositional.
|
||||
assert (IF interp (fun x : var => hyps (Var x)) p2 then valid hyps p2 else valid hyps (Not p2)).
|
||||
apply IHp2; propositional.
|
||||
apply H.
|
||||
apply in_or_app; propositional.
|
||||
unfold IF_then_else in H4; propositional.
|
||||
apply ValidImplyElim with p2.
|
||||
apply valid_weaken with hyps.
|
||||
assumption.
|
||||
propositional.
|
||||
apply ValidImplyElim with p1.
|
||||
apply ValidHyp.
|
||||
propositional.
|
||||
apply valid_weaken with hyps.
|
||||
assumption.
|
||||
propositional.
|
||||
left; propositional.
|
||||
apply ValidImplyIntro.
|
||||
assert (IF interp (fun x : var => hyps (Var x)) p1 then valid hyps p1 else valid hyps (Not p1)).
|
||||
apply IHp1; propositional.
|
||||
apply H.
|
||||
apply in_or_app; propositional.
|
||||
unfold IF_then_else in H2; propositional.
|
||||
apply ValidFalsehoodElim.
|
||||
apply ValidImplyElim with p1.
|
||||
apply valid_weaken with hyps.
|
||||
assumption.
|
||||
propositional.
|
||||
apply ValidHyp.
|
||||
propositional.
|
||||
Qed.
|
||||
|
||||
Lemma interp_valid' : forall p leftToDo alreadySplit,
|
||||
(forall x, In x (varsOf p) -> In x (alreadySplit ++ leftToDo))
|
||||
-> forall hyps, (forall x, In x alreadySplit -> hyps (Var x) \/ hyps (Not (Var x)))
|
||||
-> (forall x, hyps (Var x) \/ hyps (Not (Var x)) -> In x alreadySplit)
|
||||
-> (forall x, hyps (Var x) -> ~hyps (Not (Var x)))
|
||||
-> (forall vars : var -> Prop,
|
||||
(forall x, hyps (Var x) -> vars x)
|
||||
-> (forall x, hyps (Not (Var x)) -> ~vars x)
|
||||
-> interp vars p)
|
||||
-> valid hyps p.
|
||||
Proof.
|
||||
induct leftToDo; simplify.
|
||||
|
||||
rewrite app_nil_r in H.
|
||||
assert (IF interp (fun x : var => hyps (Var x)) p then valid hyps p else valid hyps (Not p)).
|
||||
apply interp_valid''; first_order.
|
||||
unfold IF_then_else in H4; propositional.
|
||||
exfalso.
|
||||
apply H4.
|
||||
apply H3.
|
||||
propositional.
|
||||
first_order.
|
||||
|
||||
excluded_middle (In a alreadySplit).
|
||||
|
||||
apply IHleftToDo with alreadySplit; simplify.
|
||||
apply H in H5.
|
||||
apply in_app_or in H5.
|
||||
simplify.
|
||||
apply in_or_app.
|
||||
propositional; subst.
|
||||
propositional.
|
||||
first_order.
|
||||
first_order.
|
||||
first_order.
|
||||
first_order.
|
||||
|
||||
apply ValidOrElim with (Var a) (Not (Var a)).
|
||||
apply ValidExcludedMiddle.
|
||||
|
||||
apply IHleftToDo with (alreadySplit ++ [a]); simplify.
|
||||
apply H in H5.
|
||||
apply in_app_or in H5.
|
||||
simplify.
|
||||
apply in_or_app.
|
||||
propositional; subst.
|
||||
left; apply in_or_app; propositional.
|
||||
left; apply in_or_app; simplify; propositional.
|
||||
apply in_app_or in H5.
|
||||
simplify.
|
||||
propositional; subst.
|
||||
apply H0 in H6.
|
||||
propositional.
|
||||
propositional.
|
||||
propositional.
|
||||
invert H5.
|
||||
apply in_or_app.
|
||||
simplify.
|
||||
propositional.
|
||||
apply in_or_app.
|
||||
simplify.
|
||||
first_order.
|
||||
invert H5.
|
||||
apply in_or_app.
|
||||
simplify.
|
||||
first_order.
|
||||
propositional.
|
||||
invert H5.
|
||||
invert H7.
|
||||
first_order.
|
||||
invert H5.
|
||||
first_order.
|
||||
apply H3.
|
||||
first_order.
|
||||
first_order.
|
||||
|
||||
apply IHleftToDo with (alreadySplit ++ [a]); simplify.
|
||||
apply H in H5.
|
||||
apply in_app_or in H5.
|
||||
simplify.
|
||||
apply in_or_app.
|
||||
propositional; subst.
|
||||
left; apply in_or_app; propositional.
|
||||
left; apply in_or_app; simplify; propositional.
|
||||
apply in_app_or in H5.
|
||||
simplify.
|
||||
propositional; subst.
|
||||
apply H0 in H6.
|
||||
propositional.
|
||||
propositional.
|
||||
propositional.
|
||||
invert H5.
|
||||
apply in_or_app.
|
||||
simplify.
|
||||
first_order.
|
||||
invert H5.
|
||||
apply in_or_app.
|
||||
simplify.
|
||||
propositional.
|
||||
apply in_or_app.
|
||||
simplify.
|
||||
first_order.
|
||||
propositional.
|
||||
invert H7.
|
||||
invert H7.
|
||||
invert H5.
|
||||
first_order.
|
||||
first_order.
|
||||
apply H3.
|
||||
first_order.
|
||||
first_order.
|
||||
Qed.
|
||||
|
||||
Theorem interp_valid : forall p,
|
||||
(forall vars, interp vars p)
|
||||
-> valid (fun _ => False) p.
|
||||
Proof.
|
||||
simplify.
|
||||
apply interp_valid' with (varsOf p) []; simplify; first_order.
|
||||
Qed.
|
||||
*)
|
|
@ -1,5 +1,5 @@
|
|||
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
|
||||
* Chapter 14: Separation Logic
|
||||
* Chapter 15: Separation Logic
|
||||
* Author: Adam Chlipala
|
||||
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
|
||||
* Chapter 20: Session Types
|
||||
* Chapter 21: Session Types
|
||||
* Author: Adam Chlipala
|
||||
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
|
||||
* Chapter 17: Operational Semantics for Shared-Memory Concurrency
|
||||
* Chapter 18: Operational Semantics for Shared-Memory Concurrency
|
||||
* Author: Adam Chlipala
|
||||
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
|
||||
* Chapter 5: Transition Systems
|
||||
* Chapter 6: Transition Systems
|
||||
* Author: Adam Chlipala
|
||||
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
|
||||
* Chapter 4: Transition Systems
|
||||
* Chapter 6: Transition Systems
|
||||
* Author: Adam Chlipala
|
||||
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
|
||||
* Chapter 11: Types and Mutation
|
||||
* Chapter 12: Types and Mutation
|
||||
* Author: Adam Chlipala
|
||||
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
|
||||
|
||||
|
|
15
_CoqProject
15
_CoqProject
|
@ -12,32 +12,33 @@ FrapWithoutSets.v
|
|||
Frap.v
|
||||
BasicSyntax_template.v
|
||||
BasicSyntax.v
|
||||
Polymorphism.v
|
||||
Polymorphism_template.v
|
||||
DataAbstraction.v
|
||||
Polymorphism.v
|
||||
DataAbstraction_template.v
|
||||
DataAbstraction.v
|
||||
Interpreters_template.v
|
||||
Interpreters.v
|
||||
FirstClassFunctions_template.v
|
||||
FirstClassFunctions.v
|
||||
RuleInduction_template.v
|
||||
RuleInduction.v
|
||||
TransitionSystems_template.v
|
||||
TransitionSystems.v
|
||||
IntroToProofScripting.v
|
||||
IntroToProofScripting_template.v
|
||||
IntroToProofScripting.v
|
||||
ModelChecking_template.v
|
||||
ModelChecking.v
|
||||
ProofByReflection.v
|
||||
ProofByReflection_template.v
|
||||
ProofByReflection.v
|
||||
OperationalSemantics_template.v
|
||||
OperationalSemantics.v
|
||||
LogicProgramming.v
|
||||
LogicProgramming_template.v
|
||||
LogicProgramming.v
|
||||
AbstractInterpretation.v
|
||||
CompilerCorrectness.v
|
||||
CompilerCorrectness_template.v
|
||||
SubsetTypes.v
|
||||
CompilerCorrectness.v
|
||||
SubsetTypes_template.v
|
||||
SubsetTypes.v
|
||||
LambdaCalculusAndTypeSoundness_template.v
|
||||
LambdaCalculusAndTypeSoundness.v
|
||||
DependentInductiveTypes_template.v
|
||||
|
|
|
@ -1269,8 +1269,10 @@ The most important extension to the interpreter is that it now takes in a valuat
|
|||
\denote{\phi_1 \Rightarrow \phi_2}v &=& \denote{\phi_1}v \Rightarrow \denote{\phi_2}v
|
||||
\end{eqnarray*}
|
||||
|
||||
To indicate that $\phi$ is a \emph{tautology}\index{tautology} (that is, true under any values of the variables), we write $\denote{\phi}$, as a kind of abuse of notation expanding to $\forall v. \; \denote{\phi}v$.
|
||||
|
||||
\begin{theorem}[Soundness]
|
||||
If $\vdash \phi$, then $\denote{\phi}v$ for any $v$.
|
||||
If $\vdash \phi$, then $\denote{\phi}$.
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
By appeal to Lemma \ref{valid_interp'}.
|
||||
|
@ -1287,7 +1289,7 @@ The other direction, completeness, is quite a bit more involved, and indeed its
|
|||
The basic idea is to do a proof by exhaustive case analysis over the truth values of all propositional variables $p$ that appear in a formula.
|
||||
|
||||
\begin{theorem}[Completeness]
|
||||
If $\denote{\phi}v$ for all $v$, then $\vdash \phi$.
|
||||
If $\denote{\phi}$, then $\vdash \phi$.
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
By appeal to Lemma \ref{interp_valid'}.
|
||||
|
|
Loading…
Reference in a new issue