mirror of
https://github.com/achlipala/frap.git
synced 2025-01-05 23:54:14 +00:00
Connecting: parameterizing translation in a way that should support loops later
This commit is contained in:
parent
ca6d577f84
commit
d537e28266
1 changed files with 46 additions and 21 deletions
67
Connecting.v
67
Connecting.v
|
@ -1154,21 +1154,27 @@ Module MixedToDeep(Import BW : BIT_WIDTH).
|
|||
| WhileLoop _ s1 => couldWrite x s1
|
||||
end.
|
||||
|
||||
Inductive translate (out : var) : valuation -> forall {A}, cmd A -> stmt -> Prop :=
|
||||
| TrReturn : forall V (A : Set) (v : A) e,
|
||||
Inductive translate_result (out : var) (V : valuation) (v : wrd) : stmt -> Prop :=
|
||||
| TrReturn : forall e,
|
||||
translate_exp V v e
|
||||
-> translate out V (Return v) (Assign out e)
|
||||
| TrReturned : forall V v,
|
||||
-> translate_result out V v (Assign out e)
|
||||
| TrReturned :
|
||||
V $? out = Some v
|
||||
-> translate out V (Return v) Skip
|
||||
-> translate_result out V v Skip.
|
||||
|
||||
Inductive translate {RT : Set} (translate_return : valuation -> RT -> stmt -> Prop)
|
||||
: valuation -> forall {A}, cmd A -> stmt -> Prop :=
|
||||
| TrDone : forall V (v : RT) s,
|
||||
translate_return V v s
|
||||
-> translate translate_return V (Return v) s
|
||||
| TrAssign : forall V (B : Set) (v : wrd) (c : wrd -> cmd B) e x s1,
|
||||
translate_exp V v e
|
||||
-> (forall w, translate out (V $+ (x, w)) (c w) s1)
|
||||
-> translate out V (Bind (Return v) c) (Seq (Assign x e) s1)
|
||||
-> (forall w, translate translate_return (V $+ (x, w)) (c w) s1)
|
||||
-> translate translate_return V (Bind (Return v) c) (Seq (Assign x e) s1)
|
||||
| TrAssigned : forall V (B : Set) (v : wrd) (c : wrd -> cmd B) x s1,
|
||||
V $? x = Some v
|
||||
-> translate out (V $+ (x, v)) (c v) s1
|
||||
-> translate out V (Bind (Return v) c) (Seq Skip s1).
|
||||
-> translate translate_return (V $+ (x, v)) (c v) s1
|
||||
-> translate translate_return V (Bind (Return v) c) (Seq Skip s1).
|
||||
|
||||
Example adder (a b c : wrd) :=
|
||||
Bind (Return (a ^+ b)) (fun ab => Return (ab ^+ c)).
|
||||
|
@ -1189,14 +1195,14 @@ Module MixedToDeep(Import BW : BIT_WIDTH).
|
|||
| context[add _ ?y v] => apply TrVar with (x := y); simplify; equality
|
||||
end
|
||||
|
||||
| [ |- translate _ _ (Return _) _ ] => apply TrReturn
|
||||
| [ |- translate _ _ (Return _) _ ] => apply TrDone; apply TrReturn
|
||||
| [ |- translate _ ?V (Bind (Return _) _) _ ] =>
|
||||
freshFor V ltac:(fun y =>
|
||||
eapply TrAssign with (x := y); [ | intro ])
|
||||
end.
|
||||
|
||||
Lemma translate_adder : sig (fun s =>
|
||||
forall a b c, translate "result" ($0 $+ ("a", a) $+ ("b", b) $+ ("c", c)) (adder a b c) s).
|
||||
forall a b c, translate (translate_result "result") ($0 $+ ("a", a) $+ ("b", b) $+ ("c", c)) (adder a b c) s).
|
||||
Proof.
|
||||
eexists; simplify.
|
||||
unfold adder.
|
||||
|
@ -1214,7 +1220,7 @@ Module MixedToDeep(Import BW : BIT_WIDTH).
|
|||
|
||||
Inductive translated : forall {A}, DE.heap * valuation * stmt -> ME.heap * cmd A -> Prop :=
|
||||
| Translated : forall A H h V s (c : cmd A),
|
||||
translate "result" V c s
|
||||
translate (translate_result "result") V c s
|
||||
-> heaps_compat H h
|
||||
-> translated (H, V, s) (h, c).
|
||||
|
||||
|
@ -1250,21 +1256,28 @@ Module MixedToDeep(Import BW : BIT_WIDTH).
|
|||
Lemma step_translate : forall H V s H' V' s',
|
||||
DE.step (H, V, s) (H', V', s')
|
||||
-> forall h (c : cmd wrd) out,
|
||||
translate out V c s
|
||||
translate (translate_result out) V c s
|
||||
-> heaps_compat H h
|
||||
-> exists c' h', ME.step^* (h, c) (h', c')
|
||||
/\ translate out V' c' s'
|
||||
/\ translate (translate_result out) V' c' s'
|
||||
/\ heaps_compat H' h'.
|
||||
Proof.
|
||||
induct 1; invert 1; simplify.
|
||||
|
||||
invert H3.
|
||||
apply inj_pair2 in H1; subst.
|
||||
eapply eval_translate in H5; eauto; subst.
|
||||
eapply eval_translate in H4; eauto; subst.
|
||||
do 2 eexists; propositional.
|
||||
eauto.
|
||||
apply TrReturned; simplify; auto.
|
||||
apply TrDone; apply TrReturned; simplify; auto.
|
||||
assumption.
|
||||
|
||||
invert H6.
|
||||
|
||||
invert H6.
|
||||
|
||||
invert H2.
|
||||
|
||||
apply inj_pair2 in H0; subst.
|
||||
do 2 eexists; propositional.
|
||||
eapply TrcFront.
|
||||
|
@ -1276,13 +1289,16 @@ Module MixedToDeep(Import BW : BIT_WIDTH).
|
|||
symmetry; assumption.
|
||||
assumption.
|
||||
|
||||
invert H4.
|
||||
|
||||
apply inj_pair2 in H2; subst.
|
||||
invert H0.
|
||||
do 2 eexists; propositional.
|
||||
eauto.
|
||||
eapply TrAssigned with (x := x).
|
||||
eapply eval_translate in H7; eauto.
|
||||
eapply TrAssigned.
|
||||
instantiate (1 := x).
|
||||
simplify.
|
||||
eapply eval_translate in H7; eauto.
|
||||
subst.
|
||||
reflexivity.
|
||||
match goal with
|
||||
|
@ -1292,10 +1308,18 @@ Module MixedToDeep(Import BW : BIT_WIDTH).
|
|||
assumption.
|
||||
|
||||
invert H0.
|
||||
|
||||
invert H4.
|
||||
|
||||
invert H3.
|
||||
|
||||
invert H4.
|
||||
|
||||
invert H3.
|
||||
Qed.
|
||||
|
||||
Theorem translated_simulates : forall H V c h s,
|
||||
translate "result" V c s
|
||||
translate (translate_result "result") V c s
|
||||
-> heaps_compat H h
|
||||
-> simulates (translated (A := wrd)) (DE.trsys_of H V s) (ME.multistep_trsys_of h c).
|
||||
Proof.
|
||||
|
@ -1333,7 +1357,7 @@ Module MixedToDeep(Import BW : BIT_WIDTH).
|
|||
|
||||
Lemma not_stuck : forall A h (c : cmd A) h' c',
|
||||
step (h, c) (h', c')
|
||||
-> forall out V s, translate out V c s
|
||||
-> forall out V s, translate (translate_result out) V c s
|
||||
-> forall H, exists p', DE.step (H, V, s) p'.
|
||||
Proof.
|
||||
induct 1; invert 1; simplify.
|
||||
|
@ -1359,7 +1383,7 @@ Module MixedToDeep(Import BW : BIT_WIDTH).
|
|||
hoare_triple P c Q
|
||||
-> P h
|
||||
-> heaps_compat H h
|
||||
-> translate "result" V c s
|
||||
-> translate (translate_result "result") V c s
|
||||
-> V $? "result" = None
|
||||
-> invariantFor (DE.trsys_of H V s)
|
||||
(fun p => snd p = Skip
|
||||
|
@ -1380,6 +1404,7 @@ Module MixedToDeep(Import BW : BIT_WIDTH).
|
|||
apply inj_pair2 in H8; subst.
|
||||
invert H11.
|
||||
apply inj_pair2 in H6; subst.
|
||||
invert H8.
|
||||
right; eexists.
|
||||
econstructor; eauto.
|
||||
auto.
|
||||
|
|
Loading…
Reference in a new issue