mirror of
https://github.com/achlipala/frap.git
synced 2024-11-10 00:07:51 +00:00
SessionTypes: starting with a more basic version
This commit is contained in:
parent
1fdf19f4f0
commit
d839cccbad
1 changed files with 166 additions and 34 deletions
200
SessionTypes.v
200
SessionTypes.v
|
@ -9,6 +9,167 @@ Set Implicit Arguments.
|
||||||
Set Asymmetric Patterns.
|
Set Asymmetric Patterns.
|
||||||
|
|
||||||
|
|
||||||
|
(** * Basic Two-Party Session Types *)
|
||||||
|
|
||||||
|
Module BasicTwoParty.
|
||||||
|
|
||||||
|
(** ** Defining the type system *)
|
||||||
|
|
||||||
|
Inductive type :=
|
||||||
|
| TSend (ch : channel) (A : Set) (t : type)
|
||||||
|
| TRecv (ch : channel) (A : Set) (t : type)
|
||||||
|
| TDone.
|
||||||
|
|
||||||
|
Delimit Scope st_scope with st.
|
||||||
|
Bind Scope st_scope with type.
|
||||||
|
Notation "!!! ch ( A ) ; k" := (TSend ch A k%st) (right associativity, at level 45, ch at level 0) : st_scope.
|
||||||
|
Notation "??? ch ( A ) ; k" := (TRecv ch A k%st) (right associativity, at level 45, ch at level 0) : st_scope.
|
||||||
|
|
||||||
|
Inductive hasty : proc -> type -> Prop :=
|
||||||
|
| HtSend : forall ch (A : Set) (v : A) k t,
|
||||||
|
hasty k t
|
||||||
|
-> hasty (Send ch v k) (TSend ch A t)
|
||||||
|
| HtRecv : forall ch (A : Set) (k : A -> _) t,
|
||||||
|
(forall v, hasty (k v) t)
|
||||||
|
-> hasty (Recv ch k) (TRecv ch A t)
|
||||||
|
| HtDone :
|
||||||
|
hasty Done TDone.
|
||||||
|
|
||||||
|
|
||||||
|
(** * Examples of typed processes *)
|
||||||
|
|
||||||
|
(* Recall our first example from last chapter. *)
|
||||||
|
Definition addN (k : nat) (input output : channel) : proc :=
|
||||||
|
??input(n : nat);
|
||||||
|
!!output(n + k);
|
||||||
|
Done.
|
||||||
|
|
||||||
|
Ltac hasty := simplify; repeat ((constructor; simplify)
|
||||||
|
|| match goal with
|
||||||
|
| [ |- hasty _ (match ?E with _ => _ end) ] => cases E
|
||||||
|
| [ |- hasty (match ?E with _ => _ end) _ ] => cases E
|
||||||
|
end).
|
||||||
|
|
||||||
|
Theorem addN_typed : forall k input output,
|
||||||
|
hasty (addN k input output) (???input(nat); !!!output(nat); TDone).
|
||||||
|
Proof.
|
||||||
|
hasty.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
|
||||||
|
(** * Complementing types *)
|
||||||
|
|
||||||
|
Fixpoint complement (t : type) : type :=
|
||||||
|
match t with
|
||||||
|
| TSend ch A t1 => TRecv ch A (complement t1)
|
||||||
|
| TRecv ch A t1 => TSend ch A (complement t1)
|
||||||
|
| TDone => TDone
|
||||||
|
end.
|
||||||
|
|
||||||
|
Definition add2_client (input output : channel) : proc :=
|
||||||
|
!!input(42);
|
||||||
|
??output(_ : nat);
|
||||||
|
Done.
|
||||||
|
|
||||||
|
Theorem add2_client_typed : forall input output,
|
||||||
|
hasty (add2_client input output) (complement (???input(nat); !!!output(nat); TDone)).
|
||||||
|
Proof.
|
||||||
|
hasty.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
(** * Parallel execution preserves the existence of complementary session types. *)
|
||||||
|
|
||||||
|
Definition trsys_of pr := {|
|
||||||
|
Initial := {pr};
|
||||||
|
Step := lstepSilent
|
||||||
|
|}.
|
||||||
|
(* Note: here we force silent steps, so that all channel communication is
|
||||||
|
* internal. *)
|
||||||
|
|
||||||
|
Hint Constructors hasty.
|
||||||
|
|
||||||
|
Lemma input_typed : forall pr ch A v pr',
|
||||||
|
lstep pr (Input {| Channel := ch; TypeOf := A; Value := v |}) pr'
|
||||||
|
-> forall t, hasty pr t
|
||||||
|
-> exists k, pr = Recv ch k /\ pr' = k v.
|
||||||
|
Proof.
|
||||||
|
induct 1; invert 1; eauto.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma output_typed : forall pr ch A v pr',
|
||||||
|
lstep pr (Output {| Channel := ch; TypeOf := A; Value := v |}) pr'
|
||||||
|
-> forall t, hasty pr t
|
||||||
|
-> exists k, pr = Send ch v k /\ pr' = k.
|
||||||
|
Proof.
|
||||||
|
induct 1; invert 1; eauto.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma complementarity_forever : forall pr1 pr2 t,
|
||||||
|
hasty pr1 t
|
||||||
|
-> hasty pr2 (complement t)
|
||||||
|
-> invariantFor (trsys_of (pr1 || pr2))
|
||||||
|
(fun pr => exists pr1' pr2' t',
|
||||||
|
pr = pr1' || pr2'
|
||||||
|
/\ hasty pr1' t'
|
||||||
|
/\ hasty pr2' (complement t')).
|
||||||
|
Proof.
|
||||||
|
simplify.
|
||||||
|
apply invariant_induction; simplify.
|
||||||
|
|
||||||
|
propositional; subst.
|
||||||
|
eauto 6.
|
||||||
|
|
||||||
|
clear pr1 pr2 t H H0.
|
||||||
|
first_order; subst.
|
||||||
|
invert H2.
|
||||||
|
|
||||||
|
invert H6; invert H0.
|
||||||
|
invert H6; invert H1.
|
||||||
|
eapply input_typed in H4; eauto.
|
||||||
|
eapply output_typed in H5; eauto.
|
||||||
|
first_order; subst.
|
||||||
|
invert H0.
|
||||||
|
invert H1.
|
||||||
|
eauto 7.
|
||||||
|
eapply input_typed in H5; eauto.
|
||||||
|
eapply output_typed in H4; eauto.
|
||||||
|
first_order; subst.
|
||||||
|
invert H0.
|
||||||
|
invert H1.
|
||||||
|
eauto 10.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Theorem no_deadlock : forall pr1 pr2 t,
|
||||||
|
hasty pr1 t
|
||||||
|
-> hasty pr2 (complement t)
|
||||||
|
-> invariantFor (trsys_of (pr1 || pr2))
|
||||||
|
(fun pr => pr = (Done || Done)
|
||||||
|
\/ exists pr', lstep pr Silent pr').
|
||||||
|
Proof.
|
||||||
|
simplify.
|
||||||
|
eapply invariant_weaken.
|
||||||
|
eapply complementarity_forever; eauto.
|
||||||
|
|
||||||
|
clear pr1 pr2 t H H0.
|
||||||
|
simplify; first_order; subst.
|
||||||
|
invert H0; invert H1; simplify; eauto.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Example adding_no_deadlock : forall k input output,
|
||||||
|
input <> output
|
||||||
|
-> invariantFor (trsys_of (addN k input output
|
||||||
|
|| add2_client input output))
|
||||||
|
(fun pr => pr = (Done || Done)
|
||||||
|
\/ exists pr', lstep pr Silent pr').
|
||||||
|
Proof.
|
||||||
|
simplify.
|
||||||
|
eapply no_deadlock with (t := (???input(nat); !!!output(nat); TDone)%st);
|
||||||
|
hasty.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
End BasicTwoParty.
|
||||||
|
|
||||||
|
|
||||||
(** * Two-Party Session Types *)
|
(** * Two-Party Session Types *)
|
||||||
|
|
||||||
Module TwoParty.
|
Module TwoParty.
|
||||||
|
@ -35,28 +196,12 @@ Inductive hasty : proc -> type -> Prop :=
|
||||||
| HtDone :
|
| HtDone :
|
||||||
hasty Done TDone.
|
hasty Done TDone.
|
||||||
|
|
||||||
|
|
||||||
(** * Examples of typed processes *)
|
|
||||||
|
|
||||||
(* Recall our first example from last chapter. *)
|
|
||||||
Definition addN (k : nat) (input output : channel) : proc :=
|
|
||||||
??input(n : nat);
|
|
||||||
!!output(n + k);
|
|
||||||
Done.
|
|
||||||
|
|
||||||
Ltac hasty := simplify; repeat ((constructor; simplify)
|
Ltac hasty := simplify; repeat ((constructor; simplify)
|
||||||
|| match goal with
|
|| match goal with
|
||||||
| [ |- hasty _ (match ?E with _ => _ end) ] => cases E
|
| [ |- hasty _ (match ?E with _ => _ end) ] => cases E
|
||||||
| [ |- hasty (match ?E with _ => _ end) _ ] => cases E
|
| [ |- hasty (match ?E with _ => _ end) _ ] => cases E
|
||||||
end).
|
end).
|
||||||
|
|
||||||
Theorem addN_typed : forall k input output,
|
|
||||||
hasty (addN k input output) (???input(_ : nat); !!!output(_ : nat); TDone).
|
|
||||||
Proof.
|
|
||||||
hasty.
|
|
||||||
Qed.
|
|
||||||
|
|
||||||
|
|
||||||
(** * Complementing types *)
|
(** * Complementing types *)
|
||||||
|
|
||||||
Fixpoint complement (t : type) : type :=
|
Fixpoint complement (t : type) : type :=
|
||||||
|
@ -66,17 +211,6 @@ Fixpoint complement (t : type) : type :=
|
||||||
| TDone => TDone
|
| TDone => TDone
|
||||||
end.
|
end.
|
||||||
|
|
||||||
Definition add2_client (input output : channel) : proc :=
|
|
||||||
!!input(42);
|
|
||||||
??output(_ : nat);
|
|
||||||
Done.
|
|
||||||
|
|
||||||
Theorem add2_client_typed : forall input output,
|
|
||||||
hasty (add2_client input output) (complement (???input(_ : nat); !!!output(_ : nat); TDone)).
|
|
||||||
Proof.
|
|
||||||
hasty.
|
|
||||||
Qed.
|
|
||||||
|
|
||||||
(** ** Example *)
|
(** ** Example *)
|
||||||
|
|
||||||
Section online_store.
|
Section online_store.
|
||||||
|
@ -207,7 +341,7 @@ Theorem no_deadlock : forall pr1 pr2 t,
|
||||||
-> hasty pr2 (complement t)
|
-> hasty pr2 (complement t)
|
||||||
-> invariantFor (trsys_of (pr1 || pr2))
|
-> invariantFor (trsys_of (pr1 || pr2))
|
||||||
(fun pr => pr = (Done || Done)
|
(fun pr => pr = (Done || Done)
|
||||||
\/ exists l' pr', lstep pr l' pr').
|
\/ exists pr', lstep pr Silent pr').
|
||||||
Proof.
|
Proof.
|
||||||
simplify.
|
simplify.
|
||||||
eapply invariant_weaken.
|
eapply invariant_weaken.
|
||||||
|
@ -216,8 +350,6 @@ Proof.
|
||||||
clear pr1 pr2 t H H0.
|
clear pr1 pr2 t H H0.
|
||||||
simplify; first_order; subst.
|
simplify; first_order; subst.
|
||||||
invert H0; invert H1; simplify; eauto.
|
invert H0; invert H1; simplify; eauto.
|
||||||
Unshelve.
|
|
||||||
assumption.
|
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Example online_store_no_deadlock : forall request_product in_stock_or_not
|
Example online_store_no_deadlock : forall request_product in_stock_or_not
|
||||||
|
@ -230,7 +362,7 @@ Example online_store_no_deadlock : forall request_product in_stock_or_not
|
||||||
send_payment_info payment_success add_review
|
send_payment_info payment_success add_review
|
||||||
in_stock payment_checker))
|
in_stock payment_checker))
|
||||||
(fun pr => pr = (Done || Done)
|
(fun pr => pr = (Done || Done)
|
||||||
\/ exists l' pr', lstep pr l' pr').
|
\/ exists pr', lstep pr Silent pr').
|
||||||
Proof.
|
Proof.
|
||||||
simplify.
|
simplify.
|
||||||
eapply no_deadlock with (t := customer_type request_product in_stock_or_not
|
eapply no_deadlock with (t := customer_type request_product in_stock_or_not
|
||||||
|
@ -1145,12 +1277,12 @@ Section online_store_with_warehouse.
|
||||||
{| Sender := Merchant';
|
{| Sender := Merchant';
|
||||||
Receiver := Customer' |}.
|
Receiver := Customer' |}.
|
||||||
|
|
||||||
Example online_store_no_deadlock' : forall product payment_info in_stock good_infos,
|
Example online_store_no_deadlock' : forall product payment_info payment_checker in_stock,
|
||||||
NoDup [request_product; in_stock_or_not; send_payment_info; payment_success; add_review;
|
NoDup [request_product; in_stock_or_not; send_payment_info; payment_success; add_review;
|
||||||
merchant_to_warehouse; warehouse_to_merchant]
|
merchant_to_warehouse; warehouse_to_merchant]
|
||||||
-> invariantFor (trsys_of (customer' product payment_info
|
-> invariantFor (trsys_of (customer' product payment_info
|
||||||
|| (merchant' in_stock
|
|| (merchant' payment_checker
|
||||||
|| (warehouse good_infos || Done))))
|
|| (warehouse in_stock || Done))))
|
||||||
(fun pr => inert pr
|
(fun pr => inert pr
|
||||||
\/ exists pr', lstep pr Silent pr').
|
\/ exists pr', lstep pr Silent pr').
|
||||||
Proof.
|
Proof.
|
||||||
|
|
Loading…
Reference in a new issue