SessionTypes: starting with a more basic version

This commit is contained in:
Adam Chlipala 2018-05-13 18:57:53 -04:00
parent 1fdf19f4f0
commit d839cccbad

View file

@ -9,6 +9,167 @@ Set Implicit Arguments.
Set Asymmetric Patterns.
(** * Basic Two-Party Session Types *)
Module BasicTwoParty.
(** ** Defining the type system *)
Inductive type :=
| TSend (ch : channel) (A : Set) (t : type)
| TRecv (ch : channel) (A : Set) (t : type)
| TDone.
Delimit Scope st_scope with st.
Bind Scope st_scope with type.
Notation "!!! ch ( A ) ; k" := (TSend ch A k%st) (right associativity, at level 45, ch at level 0) : st_scope.
Notation "??? ch ( A ) ; k" := (TRecv ch A k%st) (right associativity, at level 45, ch at level 0) : st_scope.
Inductive hasty : proc -> type -> Prop :=
| HtSend : forall ch (A : Set) (v : A) k t,
hasty k t
-> hasty (Send ch v k) (TSend ch A t)
| HtRecv : forall ch (A : Set) (k : A -> _) t,
(forall v, hasty (k v) t)
-> hasty (Recv ch k) (TRecv ch A t)
| HtDone :
hasty Done TDone.
(** * Examples of typed processes *)
(* Recall our first example from last chapter. *)
Definition addN (k : nat) (input output : channel) : proc :=
??input(n : nat);
!!output(n + k);
Done.
Ltac hasty := simplify; repeat ((constructor; simplify)
|| match goal with
| [ |- hasty _ (match ?E with _ => _ end) ] => cases E
| [ |- hasty (match ?E with _ => _ end) _ ] => cases E
end).
Theorem addN_typed : forall k input output,
hasty (addN k input output) (???input(nat); !!!output(nat); TDone).
Proof.
hasty.
Qed.
(** * Complementing types *)
Fixpoint complement (t : type) : type :=
match t with
| TSend ch A t1 => TRecv ch A (complement t1)
| TRecv ch A t1 => TSend ch A (complement t1)
| TDone => TDone
end.
Definition add2_client (input output : channel) : proc :=
!!input(42);
??output(_ : nat);
Done.
Theorem add2_client_typed : forall input output,
hasty (add2_client input output) (complement (???input(nat); !!!output(nat); TDone)).
Proof.
hasty.
Qed.
(** * Parallel execution preserves the existence of complementary session types. *)
Definition trsys_of pr := {|
Initial := {pr};
Step := lstepSilent
|}.
(* Note: here we force silent steps, so that all channel communication is
* internal. *)
Hint Constructors hasty.
Lemma input_typed : forall pr ch A v pr',
lstep pr (Input {| Channel := ch; TypeOf := A; Value := v |}) pr'
-> forall t, hasty pr t
-> exists k, pr = Recv ch k /\ pr' = k v.
Proof.
induct 1; invert 1; eauto.
Qed.
Lemma output_typed : forall pr ch A v pr',
lstep pr (Output {| Channel := ch; TypeOf := A; Value := v |}) pr'
-> forall t, hasty pr t
-> exists k, pr = Send ch v k /\ pr' = k.
Proof.
induct 1; invert 1; eauto.
Qed.
Lemma complementarity_forever : forall pr1 pr2 t,
hasty pr1 t
-> hasty pr2 (complement t)
-> invariantFor (trsys_of (pr1 || pr2))
(fun pr => exists pr1' pr2' t',
pr = pr1' || pr2'
/\ hasty pr1' t'
/\ hasty pr2' (complement t')).
Proof.
simplify.
apply invariant_induction; simplify.
propositional; subst.
eauto 6.
clear pr1 pr2 t H H0.
first_order; subst.
invert H2.
invert H6; invert H0.
invert H6; invert H1.
eapply input_typed in H4; eauto.
eapply output_typed in H5; eauto.
first_order; subst.
invert H0.
invert H1.
eauto 7.
eapply input_typed in H5; eauto.
eapply output_typed in H4; eauto.
first_order; subst.
invert H0.
invert H1.
eauto 10.
Qed.
Theorem no_deadlock : forall pr1 pr2 t,
hasty pr1 t
-> hasty pr2 (complement t)
-> invariantFor (trsys_of (pr1 || pr2))
(fun pr => pr = (Done || Done)
\/ exists pr', lstep pr Silent pr').
Proof.
simplify.
eapply invariant_weaken.
eapply complementarity_forever; eauto.
clear pr1 pr2 t H H0.
simplify; first_order; subst.
invert H0; invert H1; simplify; eauto.
Qed.
Example adding_no_deadlock : forall k input output,
input <> output
-> invariantFor (trsys_of (addN k input output
|| add2_client input output))
(fun pr => pr = (Done || Done)
\/ exists pr', lstep pr Silent pr').
Proof.
simplify.
eapply no_deadlock with (t := (???input(nat); !!!output(nat); TDone)%st);
hasty.
Qed.
End BasicTwoParty.
(** * Two-Party Session Types *)
Module TwoParty.
@ -35,28 +196,12 @@ Inductive hasty : proc -> type -> Prop :=
| HtDone :
hasty Done TDone.
(** * Examples of typed processes *)
(* Recall our first example from last chapter. *)
Definition addN (k : nat) (input output : channel) : proc :=
??input(n : nat);
!!output(n + k);
Done.
Ltac hasty := simplify; repeat ((constructor; simplify)
|| match goal with
| [ |- hasty _ (match ?E with _ => _ end) ] => cases E
| [ |- hasty (match ?E with _ => _ end) _ ] => cases E
end).
Theorem addN_typed : forall k input output,
hasty (addN k input output) (???input(_ : nat); !!!output(_ : nat); TDone).
Proof.
hasty.
Qed.
(** * Complementing types *)
Fixpoint complement (t : type) : type :=
@ -66,17 +211,6 @@ Fixpoint complement (t : type) : type :=
| TDone => TDone
end.
Definition add2_client (input output : channel) : proc :=
!!input(42);
??output(_ : nat);
Done.
Theorem add2_client_typed : forall input output,
hasty (add2_client input output) (complement (???input(_ : nat); !!!output(_ : nat); TDone)).
Proof.
hasty.
Qed.
(** ** Example *)
Section online_store.
@ -207,7 +341,7 @@ Theorem no_deadlock : forall pr1 pr2 t,
-> hasty pr2 (complement t)
-> invariantFor (trsys_of (pr1 || pr2))
(fun pr => pr = (Done || Done)
\/ exists l' pr', lstep pr l' pr').
\/ exists pr', lstep pr Silent pr').
Proof.
simplify.
eapply invariant_weaken.
@ -216,8 +350,6 @@ Proof.
clear pr1 pr2 t H H0.
simplify; first_order; subst.
invert H0; invert H1; simplify; eauto.
Unshelve.
assumption.
Qed.
Example online_store_no_deadlock : forall request_product in_stock_or_not
@ -230,7 +362,7 @@ Example online_store_no_deadlock : forall request_product in_stock_or_not
send_payment_info payment_success add_review
in_stock payment_checker))
(fun pr => pr = (Done || Done)
\/ exists l' pr', lstep pr l' pr').
\/ exists pr', lstep pr Silent pr').
Proof.
simplify.
eapply no_deadlock with (t := customer_type request_product in_stock_or_not
@ -1145,12 +1277,12 @@ Section online_store_with_warehouse.
{| Sender := Merchant';
Receiver := Customer' |}.
Example online_store_no_deadlock' : forall product payment_info in_stock good_infos,
Example online_store_no_deadlock' : forall product payment_info payment_checker in_stock,
NoDup [request_product; in_stock_or_not; send_payment_info; payment_success; add_review;
merchant_to_warehouse; warehouse_to_merchant]
-> invariantFor (trsys_of (customer' product payment_info
|| (merchant' in_stock
|| (warehouse good_infos || Done))))
|| (merchant' payment_checker
|| (warehouse in_stock || Done))))
(fun pr => inert pr
\/ exists pr', lstep pr Silent pr').
Proof.