mirror of
https://github.com/achlipala/frap.git
synced 2024-12-01 00:26:18 +00:00
Start of OperationalSemantics: big-step and factorial
This commit is contained in:
parent
fd45f9d71a
commit
db643cbfc4
1 changed files with 227 additions and 0 deletions
227
OperationalSemantics.v
Normal file
227
OperationalSemantics.v
Normal file
|
@ -0,0 +1,227 @@
|
|||
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
|
||||
* Chapter 6: Operational Semantics
|
||||
* Author: Adam Chlipala
|
||||
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
|
||||
|
||||
Require Import Frap.
|
||||
|
||||
Set Implicit Arguments.
|
||||
|
||||
|
||||
(* OK, enough with defining transition relations manually. Let's return to our
|
||||
* syntax of imperative programs from Chapter 3. *)
|
||||
|
||||
Inductive arith : Set :=
|
||||
| Const (n : nat)
|
||||
| Var (x : var)
|
||||
| Plus (e1 e2 : arith)
|
||||
| Minus (e1 e2 : arith)
|
||||
| Times (e1 e2 : arith).
|
||||
|
||||
Inductive cmd :=
|
||||
| Skip
|
||||
| Assign (x : var) (e : arith)
|
||||
| Sequence (c1 c2 : cmd)
|
||||
| If (e : arith) (then_ else_ : cmd)
|
||||
| While (e : arith) (body : cmd).
|
||||
(* Important differences: we added [If] and switched [Repeat] to general
|
||||
* [While]. *)
|
||||
|
||||
(* Here are some notations for the language, which again we won't really
|
||||
* explain. *)
|
||||
Coercion Const : nat >-> arith.
|
||||
Coercion Var : var >-> arith.
|
||||
Infix "+" := Plus : arith_scope.
|
||||
Infix "-" := Minus : arith_scope.
|
||||
Infix "*" := Times : arith_scope.
|
||||
Delimit Scope arith_scope with arith.
|
||||
Notation "x <- e" := (Assign x e%arith) (at level 75).
|
||||
Infix ";" := Sequence (at level 76).
|
||||
Notation "'when' e 'do' then_ 'else' else_ 'done'" := (If e%arith then_ else_) (at level 75, e at level 0).
|
||||
Notation "'while' e 'do' body 'done'" := (While e%arith body) (at level 75).
|
||||
|
||||
(* Here's an adaptation of our factorial example from Chapter 3. *)
|
||||
Example factorial :=
|
||||
"output" <- 1;
|
||||
while "input" do
|
||||
"output" <- "output" * "input";
|
||||
"input" <- "input" - 1
|
||||
done.
|
||||
|
||||
(* Recall our use of a recursive function to interpret expressions. *)
|
||||
Definition valuation := fmap var nat.
|
||||
Fixpoint interp (e : arith) (v : valuation) : nat :=
|
||||
match e with
|
||||
| Const n => n
|
||||
| Var x =>
|
||||
match v $? x with
|
||||
| None => 0
|
||||
| Some n => n
|
||||
end
|
||||
| Plus e1 e2 => interp e1 v + interp e2 v
|
||||
| Minus e1 e2 => interp e1 v - interp e2 v
|
||||
| Times e1 e2 => interp e1 v * interp e2 v
|
||||
end.
|
||||
|
||||
(* Our old trick of interpreters won't work for this new language, because of
|
||||
* the general "while" loops. No such interpreter could terminate for all
|
||||
* programs. Instead, we will use inductive predicates to explain program
|
||||
* meanings. First, let's apply the most intuitive method, called
|
||||
* *big-step operational semantics*. *)
|
||||
Inductive eval : valuation -> cmd -> valuation -> Prop :=
|
||||
| EvalSkip : forall v,
|
||||
eval v Skip v
|
||||
| EvalAssign : forall v x e,
|
||||
eval v (Assign x e) (v $+ (x, interp e v))
|
||||
| EvalSeq : forall v c1 v1 c2 v2,
|
||||
eval v c1 v1
|
||||
-> eval v1 c2 v2
|
||||
-> eval v (Sequence c1 c2) v2
|
||||
| EvalIfTrue : forall v e then_ else_ v',
|
||||
interp e v <> 0
|
||||
-> eval v then_ v'
|
||||
-> eval v (If e then_ else_) v'
|
||||
| EvalIfFalse : forall v e then_ else_ v',
|
||||
interp e v = 0
|
||||
-> eval v else_ v'
|
||||
-> eval v (If e then_ else_) v'
|
||||
| EvalWhileTrue : forall v e body v' v'',
|
||||
interp e v <> 0
|
||||
-> eval v body v'
|
||||
-> eval v' (While e body) v''
|
||||
-> eval v (While e body) v''
|
||||
| EvalWhileFalse : forall v e body,
|
||||
interp e v = 0
|
||||
-> eval v (While e body) v.
|
||||
|
||||
(* Let's run the factorial program on a few inputs. *)
|
||||
Theorem factorial_2 : exists v, eval ($0 $+ ("input", 2)) factorial v
|
||||
/\ v $? "output" = Some 2.
|
||||
Proof.
|
||||
eexists; propositional.
|
||||
|
||||
econstructor.
|
||||
econstructor.
|
||||
econstructor.
|
||||
simplify.
|
||||
equality.
|
||||
econstructor.
|
||||
econstructor.
|
||||
econstructor.
|
||||
econstructor.
|
||||
simplify.
|
||||
equality.
|
||||
econstructor.
|
||||
econstructor.
|
||||
econstructor.
|
||||
apply EvalWhileFalse.
|
||||
(* Note that, for this step, we had to specify which rule to use, since
|
||||
* otherwise [econstructor] incorrectly guesses [EvalWhileTrue]. *)
|
||||
simplify.
|
||||
equality.
|
||||
|
||||
simplify.
|
||||
equality.
|
||||
Qed.
|
||||
|
||||
(* That was rather repetitive. It's easy to automate. *)
|
||||
|
||||
Ltac eval1 :=
|
||||
apply EvalSkip || apply EvalAssign || eapply EvalSeq
|
||||
|| (apply EvalIfTrue; [ simplify; equality | ])
|
||||
|| (apply EvalIfFalse; [ simplify; equality | ])
|
||||
|| (eapply EvalWhileTrue; [ simplify; equality | | ])
|
||||
|| (apply EvalWhileFalse; [ simplify; equality ]).
|
||||
Ltac evaluate := simplify; try equality; repeat eval1.
|
||||
|
||||
Theorem factorial_2_snazzy : exists v, eval ($0 $+ ("input", 2)) factorial v
|
||||
/\ v $? "output" = Some 2.
|
||||
Proof.
|
||||
eexists; propositional.
|
||||
evaluate.
|
||||
evaluate.
|
||||
Qed.
|
||||
|
||||
Theorem factorial_3 : exists v, eval ($0 $+ ("input", 3)) factorial v
|
||||
/\ v $? "output" = Some 6.
|
||||
Proof.
|
||||
eexists; propositional.
|
||||
evaluate.
|
||||
evaluate.
|
||||
Qed.
|
||||
|
||||
(* Instead of chugging through these relatively slow individual executions,
|
||||
* let's prove once and for all that [factorial] is correct. *)
|
||||
Fixpoint fact (n : nat) : nat :=
|
||||
match n with
|
||||
| O => 1
|
||||
| S n' => n * fact n'
|
||||
end.
|
||||
|
||||
Example factorial_loop :=
|
||||
while "input" do
|
||||
"output" <- "output" * "input";
|
||||
"input" <- "input" - 1
|
||||
done.
|
||||
|
||||
Lemma factorial_loop_correct : forall n v out, v $? "input" = Some n
|
||||
-> v $? "output" = Some out
|
||||
-> exists v', eval v factorial_loop v'
|
||||
/\ v' $? "output" = Some (fact n * out).
|
||||
Proof.
|
||||
induct n; simplify.
|
||||
|
||||
exists v; propositional.
|
||||
apply EvalWhileFalse.
|
||||
simplify.
|
||||
rewrite H.
|
||||
equality.
|
||||
rewrite H0.
|
||||
f_equal.
|
||||
ring.
|
||||
|
||||
assert (exists v', eval (v $+ ("output", out * S n) $+ ("input", n)) factorial_loop v'
|
||||
/\ v' $? "output" = Some (fact n * (out * S n))).
|
||||
apply IHn.
|
||||
simplify; equality.
|
||||
simplify; equality.
|
||||
first_order.
|
||||
eexists; propositional.
|
||||
econstructor.
|
||||
simplify.
|
||||
rewrite H.
|
||||
equality.
|
||||
econstructor.
|
||||
econstructor.
|
||||
econstructor.
|
||||
simplify.
|
||||
rewrite H, H0.
|
||||
replace (S n - 1) with n by linear_arithmetic.
|
||||
(* [replace e1 with e2 by tac]: replace occurrences of [e1] with [e2], proving
|
||||
* [e2 = e1] with tactic [tac]. *)
|
||||
apply H1.
|
||||
rewrite H2.
|
||||
f_equal.
|
||||
ring.
|
||||
Qed.
|
||||
|
||||
Theorem factorial_correct : forall n v, v $? "input" = Some n
|
||||
-> exists v', eval v factorial v'
|
||||
/\ v' $? "output" = Some (fact n).
|
||||
Proof.
|
||||
simplify.
|
||||
assert (exists v', eval (v $+ ("output", 1)) factorial_loop v'
|
||||
/\ v' $? "output" = Some (fact n * 1)).
|
||||
apply factorial_loop_correct.
|
||||
simplify; equality.
|
||||
simplify; equality.
|
||||
first_order.
|
||||
eexists; propositional.
|
||||
econstructor.
|
||||
econstructor.
|
||||
simplify.
|
||||
apply H0.
|
||||
rewrite H1.
|
||||
f_equal.
|
||||
ring.
|
||||
Qed.
|
Loading…
Reference in a new issue