AbstractInterpretation: analyzed one example used intervals

This commit is contained in:
Adam Chlipala 2016-03-05 22:02:27 -05:00
parent b2de37b496
commit e146afebe5

View file

@ -1102,13 +1102,13 @@ Module SimpleAbstractInterpreter.
Lemma merge_astates_fok : forall x : option (astate parity_absint),
Lemma merge_astates_fok_parity : forall x : option (astate parity_absint),
match x with Some x' => Some x' | None => None end = x.
Proof.
simplify; cases x; equality.
Qed.
Lemma merge_astates_fok2 : forall x (y : option (astate parity_absint)),
Lemma merge_astates_fok2_parity : forall x (y : option (astate parity_absint)),
match y with
| Some y' => Some (merge_astate x y')
| None => Some x
@ -1117,7 +1117,7 @@ Module SimpleAbstractInterpreter.
simplify; cases y; equality.
Qed.
Hint Resolve merge_astates_fok merge_astates_fok2.
Hint Resolve merge_astates_fok_parity merge_astates_fok2_parity.
Lemma subsumeds_empty : forall a (ss : astates a),
subsumeds $0 ss.
@ -1351,32 +1351,6 @@ Module SimpleAbstractInterpreter.
Hint Rewrite interval_join_impossible1 interval_join_impossible2 interval_join_possible
using assumption.
(*Lemma interval_join_possible_bwd : forall x y,
impossible (interval_join x y) = false
-> impossible x = false /\ impossible y = false.
Proof.
unfold impossible, interval_join; simplify.
repeat match goal with
| [ H : Some _ = Some _ |- _ ] => invert H
| [ _ : context[match ?E with _ => _ end] |- _ ] => cases E; simplify
| [ |- context[match ?E with _ => _ end] ] => cases E; simplify
end; propositional.
exfalso; linear_arithmetic.
invert Heq.
cases (Upper x); simplify.
cases (Upper y); simplify.
cases (min (Lower x) (Lower y) <=? max n n0).
cases (Lower x <=? n).
cases (Lower x <=? n).
cases (impossible x); simplify.
unfold impossible in H; simplify; equality.
cases (impossible y); simplify; equality.
Qed.*)
Definition interval_combine (f : nat -> nat -> nat) (x y : interval) :=
if impossible x || impossible y then
{| Lower := 1; Upper := Some 0 |}
@ -1615,4 +1589,96 @@ Module SimpleAbstractInterpreter.
end; eauto; try equality; linear_arithmetic).
Qed.
Lemma merge_astates_fok_interval : forall x : option (astate interval_absint),
match x with Some x' => Some x' | None => None end = x.
Proof.
simplify; cases x; equality.
Qed.
Lemma merge_astates_fok2_interval : forall x (y : option (astate interval_absint)),
match y with
| Some y' => Some (merge_astate x y')
| None => Some x
end = None -> False.
Proof.
simplify; cases y; equality.
Qed.
Hint Resolve merge_astates_fok_interval merge_astates_fok2_interval.
Lemma final_upper : forall (s s' : astate interval_absint) v x l u,
compatible s v
-> subsumed s s'
-> s' $? x = Some {| Lower := l; Upper := Some u |}
-> exists n, v $? x = Some n /\ n <= u.
Proof.
unfold compatible, subsumed; simplify.
specialize (H x); specialize (H0 x).
cases (s $? x); simplify.
rewrite Heq in *.
assert (Some t = Some t) by equality.
apply H in H2.
first_order.
specialize (H2 (S u)).
eapply H0 in H2; eauto.
invert H2; simplify.
exfalso; linear_arithmetic.
rewrite Heq in *.
equality.
Qed.
Hint Rewrite Nat.min_l Nat.min_r Nat.max_l Nat.max_r using linear_arithmetic.
Definition interval_test :=
"a" <- 6;;
"b" <- 7;;
when "c" then
"a" <- "a" + "b"
else
"b" <- "a" * "b"
done.
Theorem interval_test_ok : forall v,
invariantFor (trsys_of v interval_test)
(fun p => snd p = Skip
-> exists n, fst p $? "b" = Some n /\ n <= 42).
Proof.
simplify.
eapply invariant_weaken.
unfold interval_test.
eapply invariant_simulates.
apply absint_simulates with (a := interval_absint).
apply interval_sound.
apply interpret_sound.
apply interval_sound.
interpret1.
interpret1.
interpret1.
interpret1.
interpret1.
interpret1.
unfold interval_join, interval_combine; simplify.
interpret_done.
invert 1.
first_order.
invert H0; simplify.
invert H1.
eapply final_upper; eauto; simplify; equality.
Qed.
(*Definition ge7 :=
"n" <- 100;;
"a" <- 7;;
while "n" loop
"a" <- "a" + "n";;
"n" <- "n" - 1
done.*)
End SimpleAbstractInterpreter.