mirror of
https://github.com/achlipala/frap.git
synced 2024-11-10 00:07:51 +00:00
Factor out SepCancel
This commit is contained in:
parent
3261ad2809
commit
e1844abf25
3 changed files with 450 additions and 445 deletions
447
SepCancel.v
Normal file
447
SepCancel.v
Normal file
|
@ -0,0 +1,447 @@
|
|||
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
|
||||
* An entailment procedure for separation logic's assertion language
|
||||
* Author: Adam Chlipala
|
||||
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
|
||||
|
||||
Require Import Frap Setoid Classes.Morphisms.
|
||||
|
||||
Set Implicit Arguments.
|
||||
|
||||
Module Type SEP.
|
||||
Parameter hprop : Type.
|
||||
Parameter lift : Prop -> hprop.
|
||||
Parameter star : hprop -> hprop -> hprop.
|
||||
Parameter exis : forall A, (A -> hprop) -> hprop.
|
||||
|
||||
Notation "[| P |]" := (lift P).
|
||||
Infix "*" := star.
|
||||
Notation "'exists' x .. y , p" := (exis (fun x => .. (exis (fun y => p)) ..)).
|
||||
|
||||
Parameters himp heq : hprop -> hprop -> Prop.
|
||||
|
||||
Infix "===" := heq (no associativity, at level 70).
|
||||
Infix "===>" := himp (no associativity, at level 70).
|
||||
|
||||
Axiom himp_heq : forall p q, p === q
|
||||
<-> (p ===> q /\ q ===> p).
|
||||
Axiom himp_refl : forall p, p ===> p.
|
||||
Axiom himp_trans : forall p q r, p ===> q -> q ===> r -> p ===> r.
|
||||
|
||||
Axiom lift_left : forall p (Q : Prop) r,
|
||||
(Q -> p ===> r)
|
||||
-> p * [| Q |] ===> r.
|
||||
Axiom lift_right : forall p q (R : Prop),
|
||||
R
|
||||
-> p ===> q
|
||||
-> p ===> q * [| R |].
|
||||
Axiom extra_lift : forall (P : Prop) p,
|
||||
P
|
||||
-> p === [| P |] * p.
|
||||
|
||||
Axiom star_comm : forall p q, p * q === q * p.
|
||||
Axiom star_assoc : forall p q r, p * (q * r) === (p * q) * r.
|
||||
Axiom star_cancel : forall p1 p2 q1 q2, p1 ===> p2
|
||||
-> q1 ===> q2
|
||||
-> p1 * q1 ===> p2 * q2.
|
||||
|
||||
Axiom exis_gulp : forall A p (q : A -> _),
|
||||
p * exis q === exis (fun x => p * q x).
|
||||
Axiom exis_left : forall A (p : A -> _) q,
|
||||
(forall x, p x ===> q)
|
||||
-> exis p ===> q.
|
||||
Axiom exis_right : forall A p (q : A -> _) x,
|
||||
p ===> q x
|
||||
-> p ===> exis q.
|
||||
End SEP.
|
||||
|
||||
Module Make(Import S : SEP).
|
||||
Add Parametric Relation : hprop himp
|
||||
reflexivity proved by himp_refl
|
||||
transitivity proved by himp_trans
|
||||
as himp_rel.
|
||||
|
||||
Lemma heq_refl : forall p, p === p.
|
||||
Proof.
|
||||
intros; apply himp_heq; intuition (apply himp_refl).
|
||||
Qed.
|
||||
|
||||
Lemma heq_sym : forall p q, p === q -> q === p.
|
||||
Proof.
|
||||
intros; apply himp_heq; apply himp_heq in H; intuition.
|
||||
Qed.
|
||||
|
||||
Lemma heq_trans : forall p q r, p === q -> q === r -> p === r.
|
||||
Proof.
|
||||
intros; apply himp_heq; apply himp_heq in H; apply himp_heq in H0;
|
||||
intuition (eauto using himp_trans).
|
||||
Qed.
|
||||
|
||||
Add Parametric Relation : hprop heq
|
||||
reflexivity proved by heq_refl
|
||||
symmetry proved by heq_sym
|
||||
transitivity proved by heq_trans
|
||||
as heq_rel.
|
||||
|
||||
Instance himp_heq_mor : Proper (heq ==> heq ==> iff) himp.
|
||||
Proof.
|
||||
hnf; intros; hnf; intros.
|
||||
apply himp_heq in H; apply himp_heq in H0.
|
||||
intuition eauto using himp_trans.
|
||||
Qed.
|
||||
|
||||
Add Parametric Morphism : star
|
||||
with signature heq ==> heq ==> heq
|
||||
as star_mor.
|
||||
Proof.
|
||||
intros; apply himp_heq; apply himp_heq in H; apply himp_heq in H0;
|
||||
intuition (auto using star_cancel).
|
||||
Qed.
|
||||
|
||||
Add Parametric Morphism : star
|
||||
with signature himp ==> himp ==> himp
|
||||
as star_mor'.
|
||||
Proof.
|
||||
auto using star_cancel.
|
||||
Qed.
|
||||
|
||||
Instance exis_iff_morphism (A : Type) :
|
||||
Proper (pointwise_relation A heq ==> heq) (@exis A).
|
||||
Proof.
|
||||
hnf; intros; apply himp_heq; intuition.
|
||||
hnf in H.
|
||||
apply exis_left; intro.
|
||||
eapply exis_right.
|
||||
assert (x x0 === y x0) by eauto.
|
||||
apply himp_heq in H0; intuition eauto.
|
||||
hnf in H.
|
||||
apply exis_left; intro.
|
||||
eapply exis_right.
|
||||
assert (x x0 === y x0) by eauto.
|
||||
apply himp_heq in H0; intuition eauto.
|
||||
Qed.
|
||||
|
||||
Instance exis_imp_morphism (A : Type) :
|
||||
Proper (pointwise_relation A himp ==> himp) (@exis A).
|
||||
Proof.
|
||||
hnf; intros.
|
||||
apply exis_left; intro.
|
||||
eapply exis_right.
|
||||
unfold pointwise_relation in H.
|
||||
eauto.
|
||||
Qed.
|
||||
|
||||
Lemma star_combine_lift1 : forall P Q, [| P |] * [| Q |] ===> [| P /\ Q |].
|
||||
Proof.
|
||||
intros.
|
||||
apply lift_left; intro.
|
||||
rewrite extra_lift with (P := True); auto.
|
||||
apply lift_left; intro.
|
||||
rewrite extra_lift with (P := True) (p := [| P /\ Q |]); auto.
|
||||
apply lift_right.
|
||||
tauto.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
Lemma star_combine_lift2 : forall P Q, [| P /\ Q |] ===> [| P |] * [| Q |].
|
||||
Proof.
|
||||
intros.
|
||||
rewrite extra_lift with (P := True); auto.
|
||||
apply lift_left; intro.
|
||||
apply lift_right; try tauto.
|
||||
rewrite extra_lift with (P := True) (p := [| P |]); auto.
|
||||
apply lift_right; try tauto.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
Lemma star_combine_lift : forall P Q, [| P |] * [| Q |] === [| P /\ Q |].
|
||||
Proof.
|
||||
intros.
|
||||
apply himp_heq; auto using star_combine_lift1, star_combine_lift2.
|
||||
Qed.
|
||||
|
||||
Lemma star_comm_lift : forall P q, [| P |] * q === q * [| P |].
|
||||
Proof.
|
||||
intros; apply star_comm.
|
||||
Qed.
|
||||
|
||||
Lemma star_assoc_lift : forall p Q r,
|
||||
(p * [| Q |]) * r === p * r * [| Q |].
|
||||
Proof.
|
||||
intros.
|
||||
rewrite <- star_assoc.
|
||||
rewrite (star_comm [| Q |]).
|
||||
apply star_assoc.
|
||||
Qed.
|
||||
|
||||
Lemma star_comm_exis : forall A (p : A -> _) q, exis p * q === q * exis p.
|
||||
Proof.
|
||||
intros; apply star_comm.
|
||||
Qed.
|
||||
|
||||
Ltac lift :=
|
||||
intros; apply himp_heq; split;
|
||||
repeat (apply lift_left; intro);
|
||||
repeat (apply lift_right; intuition).
|
||||
|
||||
Lemma lift_combine : forall p Q R,
|
||||
p * [| Q |] * [| R |] === p * [| Q /\ R |].
|
||||
Proof.
|
||||
intros; apply himp_heq; split;
|
||||
repeat (apply lift_left; intro);
|
||||
repeat (apply lift_right; intuition).
|
||||
Qed.
|
||||
|
||||
Lemma lift1_left : forall (P : Prop) q,
|
||||
(P -> [| True |] ===> q)
|
||||
-> [| P |] ===> q.
|
||||
Proof.
|
||||
intros.
|
||||
rewrite (@extra_lift True [| P |]); auto.
|
||||
apply lift_left; auto.
|
||||
Qed.
|
||||
|
||||
Lemma lift1_right : forall p (Q : Prop),
|
||||
Q
|
||||
-> p ===> [| True |]
|
||||
-> p ===> [| Q |].
|
||||
Proof.
|
||||
intros.
|
||||
rewrite (@extra_lift True [| Q |]); auto.
|
||||
apply lift_right; auto.
|
||||
Qed.
|
||||
|
||||
Ltac normalize0 :=
|
||||
setoid_rewrite exis_gulp
|
||||
|| setoid_rewrite lift_combine
|
||||
|| setoid_rewrite star_assoc
|
||||
|| setoid_rewrite star_combine_lift
|
||||
|| setoid_rewrite star_comm_lift
|
||||
|| setoid_rewrite star_assoc_lift
|
||||
|| setoid_rewrite star_comm_exis.
|
||||
|
||||
Ltac normalizeL :=
|
||||
(apply exis_left || apply lift_left; intro; try congruence)
|
||||
|| match goal with
|
||||
| [ |- lift ?P ===> _ ] =>
|
||||
match P with
|
||||
| True => fail 1
|
||||
| _ => apply lift1_left; intro; try congruence
|
||||
end
|
||||
end.
|
||||
|
||||
Ltac normalizeR :=
|
||||
match goal with
|
||||
| [ |- _ ===> exis _ ] => eapply exis_right
|
||||
| [ |- _ ===> _ * lift _ ] => apply lift_right
|
||||
| [ |- _ ===> lift ?Q ] =>
|
||||
match Q with
|
||||
| True => fail 1
|
||||
| _ => apply lift1_right
|
||||
end
|
||||
end.
|
||||
|
||||
Ltac normalize1 := normalize0 || normalizeL || normalizeR.
|
||||
|
||||
Lemma lift_uncombine : forall p P Q,
|
||||
p * [| P /\ Q |] === p * [| P |] * [| Q |].
|
||||
Proof.
|
||||
lift.
|
||||
Qed.
|
||||
|
||||
Ltac normalize2 := setoid_rewrite lift_uncombine
|
||||
|| setoid_rewrite star_assoc.
|
||||
|
||||
Ltac normalizeLeft :=
|
||||
let s := fresh "s" in intro s;
|
||||
let rhs := fresh "rhs" in
|
||||
match goal with
|
||||
| [ |- _ ===> ?Q ] => set (rhs := Q)
|
||||
end;
|
||||
simpl; intros; repeat (normalize0 || normalizeL);
|
||||
repeat match goal with
|
||||
| [ H : ex _ |- _ ===> _ ] => destruct H
|
||||
| [ H : _ /\ _ |- _ ] => destruct H
|
||||
| [ H : _ = _ |- _ ] => rewrite H
|
||||
end; subst rhs.
|
||||
|
||||
Ltac normalize :=
|
||||
simpl; intros; repeat normalize1; repeat normalize2;
|
||||
repeat (match goal with
|
||||
| [ H : ex _ |- _ ===> _ ] => destruct H
|
||||
end; intuition idtac).
|
||||
|
||||
Ltac forAllAtoms p k :=
|
||||
match p with
|
||||
| ?q * ?r => (forAllAtoms q k || forAllAtoms r k) || fail 2
|
||||
| _ => k p
|
||||
end.
|
||||
|
||||
Lemma stb1 : forall p q r,
|
||||
(q * p) * r === q * r * p.
|
||||
Proof.
|
||||
intros; rewrite <- star_assoc; rewrite (star_comm p r); apply star_assoc.
|
||||
Qed.
|
||||
|
||||
Ltac sendToBack part :=
|
||||
repeat match goal with
|
||||
| [ |- context[(?p * part) * ?q] ] => setoid_rewrite (stb1 part p q)
|
||||
| [ |- context[part * ?p] ] => setoid_rewrite (star_comm part p)
|
||||
end.
|
||||
|
||||
Theorem star_cancel' : forall p1 p2 q, p1 ===> p2
|
||||
-> p1 * q ===> p2 * q.
|
||||
Proof.
|
||||
intros; apply star_cancel; auto using himp_refl.
|
||||
Qed.
|
||||
|
||||
Theorem star_cancel'' : forall p q, lift True ===> q
|
||||
-> p ===> p * q.
|
||||
Proof.
|
||||
intros.
|
||||
eapply himp_trans.
|
||||
rewrite extra_lift with (P := True); auto.
|
||||
instantiate (1 := p * q).
|
||||
rewrite star_comm.
|
||||
apply star_cancel; auto.
|
||||
reflexivity.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
Ltac cancel1 :=
|
||||
match goal with
|
||||
| [ |- _ ===> ?Q ] =>
|
||||
match Q with
|
||||
| _ => is_evar Q; fail 1
|
||||
| ?Q _ => is_evar Q; fail 1
|
||||
| _ => apply himp_refl
|
||||
end
|
||||
| [ |- ?p ===> ?q ] =>
|
||||
forAllAtoms p ltac:(fun p0 =>
|
||||
sendToBack p0;
|
||||
forAllAtoms q ltac:(fun q0 =>
|
||||
sendToBack q0;
|
||||
apply star_cancel'))
|
||||
| _ => progress autorewrite with core
|
||||
end.
|
||||
|
||||
Ltac hide_evars :=
|
||||
repeat match goal with
|
||||
| [ |- ?P ===> _ ] => is_evar P; set P
|
||||
| [ |- _ ===> ?Q ] => is_evar Q; set Q
|
||||
| [ |- context[star ?P _] ] => is_evar P; set P
|
||||
| [ |- context[star _ ?Q] ] => is_evar Q; set Q
|
||||
| [ |- _ ===> (exists v, _ * ?R v) ] => is_evar R; set R
|
||||
end.
|
||||
|
||||
Ltac restore_evars :=
|
||||
repeat match goal with
|
||||
| [ x := _ |- _ ] => subst x
|
||||
end.
|
||||
|
||||
Fixpoint flattenAnds (Ps : list Prop) : Prop :=
|
||||
match Ps with
|
||||
| nil => True
|
||||
| [P] => P
|
||||
| P :: Ps => P /\ flattenAnds Ps
|
||||
end.
|
||||
|
||||
Ltac allPuresFrom k :=
|
||||
match goal with
|
||||
| [ H : ?P |- _ ] =>
|
||||
match type of P with
|
||||
| Prop => generalize dependent H; allPuresFrom ltac:(fun Ps => k (P :: Ps))
|
||||
end
|
||||
| _ => intros; k (@nil Prop)
|
||||
end.
|
||||
|
||||
Ltac whichToQuantify skip foundAlready k :=
|
||||
match goal with
|
||||
| [ x : ?T |- _ ] =>
|
||||
match type of T with
|
||||
| Prop => fail 1
|
||||
| _ =>
|
||||
match skip with
|
||||
| context[x] => fail 1
|
||||
| _ =>
|
||||
match foundAlready with
|
||||
| context[x] => fail 1
|
||||
| _ => (instantiate (1 := lift (x = x)); fail 2)
|
||||
|| (instantiate (1 := fun _ => lift (x = x)); fail 2)
|
||||
|| (whichToQuantify skip (x, foundAlready) k)
|
||||
end
|
||||
end
|
||||
end
|
||||
| _ => k foundAlready
|
||||
end.
|
||||
|
||||
Ltac quantifyOverThem vars e k :=
|
||||
match vars with
|
||||
| tt => k e
|
||||
| (?x, ?vars') =>
|
||||
match e with
|
||||
| context[x] =>
|
||||
match eval pattern x in e with
|
||||
| ?f _ => quantifyOverThem vars' (exis f) k
|
||||
end
|
||||
| _ => quantifyOverThem vars' e k
|
||||
end
|
||||
end.
|
||||
|
||||
Ltac addQuantifiers P k :=
|
||||
whichToQuantify tt tt ltac:(fun vars =>
|
||||
quantifyOverThem vars P k).
|
||||
|
||||
Ltac addQuantifiersSkipping x P k :=
|
||||
whichToQuantify x tt ltac:(fun vars =>
|
||||
quantifyOverThem vars P k).
|
||||
|
||||
Ltac basic_cancel :=
|
||||
normalize; repeat cancel1; intuition eassumption.
|
||||
|
||||
Ltac cancel := hide_evars; normalize; repeat cancel1; restore_evars;
|
||||
repeat match goal with
|
||||
| [ H : True |- _ ] => clear H
|
||||
end;
|
||||
try match goal with
|
||||
| [ |- _ ===> ?p * ?q ] =>
|
||||
((is_evar p; fail 1) || apply star_cancel'')
|
||||
|| ((is_evar q; fail 1) || (rewrite (star_comm p q); apply star_cancel''))
|
||||
end;
|
||||
try match goal with
|
||||
| [ |- ?P ===> _ ] => sendToBack P;
|
||||
match goal with
|
||||
| [ |- ?P ===> ?Q * ?P ] => is_evar Q;
|
||||
rewrite (star_comm Q P);
|
||||
allPuresFrom ltac:(fun Ps =>
|
||||
match Ps with
|
||||
| nil => instantiate (1 := lift True)
|
||||
| _ =>
|
||||
let Ps' := eval simpl in (flattenAnds Ps) in
|
||||
addQuantifiers (lift Ps') ltac:(fun e => instantiate (1 := e))
|
||||
end;
|
||||
basic_cancel)
|
||||
end
|
||||
| [ |- ?P ===> ?Q ] => is_evar Q;
|
||||
allPuresFrom ltac:(fun Ps =>
|
||||
match Ps with
|
||||
| nil => reflexivity
|
||||
| _ =>
|
||||
let Ps' := eval simpl in (flattenAnds Ps) in
|
||||
addQuantifiers (star P (lift Ps')) ltac:(fun e => instantiate (1 := e));
|
||||
basic_cancel
|
||||
end)
|
||||
| [ |- ?P ===> ?Q ?x ] => is_evar Q;
|
||||
allPuresFrom ltac:(fun Ps =>
|
||||
match Ps with
|
||||
| nil => reflexivity
|
||||
| _ =>
|
||||
let Ps' := eval simpl in (flattenAnds Ps) in
|
||||
addQuantifiersSkipping x (star P (lift Ps'))
|
||||
ltac:(fun e => match eval pattern x in e with
|
||||
| ?f _ => instantiate (1 := f)
|
||||
end);
|
||||
basic_cancel
|
||||
end)
|
||||
| [ |- _ ===> _ ] => intuition (try congruence)
|
||||
end; intuition (try eassumption).
|
||||
End Make.
|
|
@ -3,7 +3,7 @@
|
|||
* Author: Adam Chlipala
|
||||
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
|
||||
|
||||
Require Import Frap Setoid Classes.Morphisms.
|
||||
Require Import Frap Setoid Classes.Morphisms SepCancel.
|
||||
|
||||
Set Implicit Arguments.
|
||||
Set Asymmetric Patterns.
|
||||
|
@ -92,448 +92,6 @@ Definition trsys_of (h : heap) {result} (c : cmd result) := {|
|
|||
Step := step (A := result)
|
||||
|}.
|
||||
|
||||
|
||||
(* CODE TO BE MOVED TO A LIBRARY MODULE SOON *)
|
||||
Module Type SEP.
|
||||
Parameter hprop : Type.
|
||||
Parameter lift : Prop -> hprop.
|
||||
Parameter star : hprop -> hprop -> hprop.
|
||||
Parameter exis : forall A, (A -> hprop) -> hprop.
|
||||
|
||||
Notation "[| P |]" := (lift P).
|
||||
Infix "*" := star.
|
||||
Notation "'exists' x .. y , p" := (exis (fun x => .. (exis (fun y => p)) ..)).
|
||||
|
||||
Parameters himp heq : hprop -> hprop -> Prop.
|
||||
|
||||
Infix "===" := heq (no associativity, at level 70).
|
||||
Infix "===>" := himp (no associativity, at level 70).
|
||||
|
||||
Axiom himp_heq : forall p q, p === q
|
||||
<-> (p ===> q /\ q ===> p).
|
||||
Axiom himp_refl : forall p, p ===> p.
|
||||
Axiom himp_trans : forall p q r, p ===> q -> q ===> r -> p ===> r.
|
||||
|
||||
Axiom lift_left : forall p (Q : Prop) r,
|
||||
(Q -> p ===> r)
|
||||
-> p * [| Q |] ===> r.
|
||||
Axiom lift_right : forall p q (R : Prop),
|
||||
R
|
||||
-> p ===> q
|
||||
-> p ===> q * [| R |].
|
||||
Axiom extra_lift : forall (P : Prop) p,
|
||||
P
|
||||
-> p === [| P |] * p.
|
||||
|
||||
Axiom star_comm : forall p q, p * q === q * p.
|
||||
Axiom star_assoc : forall p q r, p * (q * r) === (p * q) * r.
|
||||
Axiom star_cancel : forall p1 p2 q1 q2, p1 ===> p2
|
||||
-> q1 ===> q2
|
||||
-> p1 * q1 ===> p2 * q2.
|
||||
|
||||
Axiom exis_gulp : forall A p (q : A -> _),
|
||||
p * exis q === exis (fun x => p * q x).
|
||||
Axiom exis_left : forall A (p : A -> _) q,
|
||||
(forall x, p x ===> q)
|
||||
-> exis p ===> q.
|
||||
Axiom exis_right : forall A p (q : A -> _) x,
|
||||
p ===> q x
|
||||
-> p ===> exis q.
|
||||
End SEP.
|
||||
|
||||
Module Sep(Import S : SEP).
|
||||
Add Parametric Relation : hprop himp
|
||||
reflexivity proved by himp_refl
|
||||
transitivity proved by himp_trans
|
||||
as himp_rel.
|
||||
|
||||
Lemma heq_refl : forall p, p === p.
|
||||
Proof.
|
||||
intros; apply himp_heq; intuition (apply himp_refl).
|
||||
Qed.
|
||||
|
||||
Lemma heq_sym : forall p q, p === q -> q === p.
|
||||
Proof.
|
||||
intros; apply himp_heq; apply himp_heq in H; intuition.
|
||||
Qed.
|
||||
|
||||
Lemma heq_trans : forall p q r, p === q -> q === r -> p === r.
|
||||
Proof.
|
||||
intros; apply himp_heq; apply himp_heq in H; apply himp_heq in H0;
|
||||
intuition (eauto using himp_trans).
|
||||
Qed.
|
||||
|
||||
Add Parametric Relation : hprop heq
|
||||
reflexivity proved by heq_refl
|
||||
symmetry proved by heq_sym
|
||||
transitivity proved by heq_trans
|
||||
as heq_rel.
|
||||
|
||||
Instance himp_heq_mor : Proper (heq ==> heq ==> iff) himp.
|
||||
Proof.
|
||||
hnf; intros; hnf; intros.
|
||||
apply himp_heq in H; apply himp_heq in H0.
|
||||
intuition eauto using himp_trans.
|
||||
Qed.
|
||||
|
||||
Add Parametric Morphism : star
|
||||
with signature heq ==> heq ==> heq
|
||||
as star_mor.
|
||||
Proof.
|
||||
intros; apply himp_heq; apply himp_heq in H; apply himp_heq in H0;
|
||||
intuition (auto using star_cancel).
|
||||
Qed.
|
||||
|
||||
Add Parametric Morphism : star
|
||||
with signature himp ==> himp ==> himp
|
||||
as star_mor'.
|
||||
Proof.
|
||||
auto using star_cancel.
|
||||
Qed.
|
||||
|
||||
Instance exis_iff_morphism (A : Type) :
|
||||
Proper (pointwise_relation A heq ==> heq) (@exis A).
|
||||
Proof.
|
||||
hnf; intros; apply himp_heq; intuition.
|
||||
hnf in H.
|
||||
apply exis_left; intro.
|
||||
eapply exis_right.
|
||||
assert (x x0 === y x0) by eauto.
|
||||
apply himp_heq in H0; intuition eauto.
|
||||
hnf in H.
|
||||
apply exis_left; intro.
|
||||
eapply exis_right.
|
||||
assert (x x0 === y x0) by eauto.
|
||||
apply himp_heq in H0; intuition eauto.
|
||||
Qed.
|
||||
|
||||
Instance exis_imp_morphism (A : Type) :
|
||||
Proper (pointwise_relation A himp ==> himp) (@exis A).
|
||||
Proof.
|
||||
hnf; intros.
|
||||
apply exis_left; intro.
|
||||
eapply exis_right.
|
||||
unfold pointwise_relation in H.
|
||||
eauto.
|
||||
Qed.
|
||||
|
||||
Lemma star_combine_lift1 : forall P Q, [| P |] * [| Q |] ===> [| P /\ Q |].
|
||||
Proof.
|
||||
intros.
|
||||
apply lift_left; intro.
|
||||
rewrite extra_lift with (P := True); auto.
|
||||
apply lift_left; intro.
|
||||
rewrite extra_lift with (P := True) (p := [| P /\ Q |]); auto.
|
||||
apply lift_right.
|
||||
tauto.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
Lemma star_combine_lift2 : forall P Q, [| P /\ Q |] ===> [| P |] * [| Q |].
|
||||
Proof.
|
||||
intros.
|
||||
rewrite extra_lift with (P := True); auto.
|
||||
apply lift_left; intro.
|
||||
apply lift_right; try tauto.
|
||||
rewrite extra_lift with (P := True) (p := [| P |]); auto.
|
||||
apply lift_right; try tauto.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
Lemma star_combine_lift : forall P Q, [| P |] * [| Q |] === [| P /\ Q |].
|
||||
Proof.
|
||||
intros.
|
||||
apply himp_heq; auto using star_combine_lift1, star_combine_lift2.
|
||||
Qed.
|
||||
|
||||
Lemma star_comm_lift : forall P q, [| P |] * q === q * [| P |].
|
||||
Proof.
|
||||
intros; apply star_comm.
|
||||
Qed.
|
||||
|
||||
Lemma star_assoc_lift : forall p Q r,
|
||||
(p * [| Q |]) * r === p * r * [| Q |].
|
||||
Proof.
|
||||
intros.
|
||||
rewrite <- star_assoc.
|
||||
rewrite (star_comm [| Q |]).
|
||||
apply star_assoc.
|
||||
Qed.
|
||||
|
||||
Lemma star_comm_exis : forall A (p : A -> _) q, exis p * q === q * exis p.
|
||||
Proof.
|
||||
intros; apply star_comm.
|
||||
Qed.
|
||||
|
||||
Ltac lift :=
|
||||
intros; apply himp_heq; split;
|
||||
repeat (apply lift_left; intro);
|
||||
repeat (apply lift_right; intuition).
|
||||
|
||||
Lemma lift_combine : forall p Q R,
|
||||
p * [| Q |] * [| R |] === p * [| Q /\ R |].
|
||||
Proof.
|
||||
intros; apply himp_heq; split;
|
||||
repeat (apply lift_left; intro);
|
||||
repeat (apply lift_right; intuition).
|
||||
Qed.
|
||||
|
||||
Lemma lift1_left : forall (P : Prop) q,
|
||||
(P -> [| True |] ===> q)
|
||||
-> [| P |] ===> q.
|
||||
Proof.
|
||||
intros.
|
||||
rewrite (@extra_lift True [| P |]); auto.
|
||||
apply lift_left; auto.
|
||||
Qed.
|
||||
|
||||
Lemma lift1_right : forall p (Q : Prop),
|
||||
Q
|
||||
-> p ===> [| True |]
|
||||
-> p ===> [| Q |].
|
||||
Proof.
|
||||
intros.
|
||||
rewrite (@extra_lift True [| Q |]); auto.
|
||||
apply lift_right; auto.
|
||||
Qed.
|
||||
|
||||
Ltac normalize0 :=
|
||||
setoid_rewrite exis_gulp
|
||||
|| setoid_rewrite lift_combine
|
||||
|| setoid_rewrite star_assoc
|
||||
|| setoid_rewrite star_combine_lift
|
||||
|| setoid_rewrite star_comm_lift
|
||||
|| setoid_rewrite star_assoc_lift
|
||||
|| setoid_rewrite star_comm_exis.
|
||||
|
||||
Ltac normalizeL :=
|
||||
(apply exis_left || apply lift_left; intro; try congruence)
|
||||
|| match goal with
|
||||
| [ |- lift ?P ===> _ ] =>
|
||||
match P with
|
||||
| True => fail 1
|
||||
| _ => apply lift1_left; intro; try congruence
|
||||
end
|
||||
end.
|
||||
|
||||
Ltac normalizeR :=
|
||||
match goal with
|
||||
| [ |- _ ===> exis _ ] => eapply exis_right
|
||||
| [ |- _ ===> _ * lift _ ] => apply lift_right
|
||||
| [ |- _ ===> lift ?Q ] =>
|
||||
match Q with
|
||||
| True => fail 1
|
||||
| _ => apply lift1_right
|
||||
end
|
||||
end.
|
||||
|
||||
Ltac normalize1 := normalize0 || normalizeL || normalizeR.
|
||||
|
||||
Lemma lift_uncombine : forall p P Q,
|
||||
p * [| P /\ Q |] === p * [| P |] * [| Q |].
|
||||
Proof.
|
||||
lift.
|
||||
Qed.
|
||||
|
||||
Ltac normalize2 := setoid_rewrite lift_uncombine
|
||||
|| setoid_rewrite star_assoc.
|
||||
|
||||
Ltac normalizeLeft :=
|
||||
let s := fresh "s" in intro s;
|
||||
let rhs := fresh "rhs" in
|
||||
match goal with
|
||||
| [ |- _ ===> ?Q ] => set (rhs := Q)
|
||||
end;
|
||||
simpl; intros; repeat (normalize0 || normalizeL);
|
||||
repeat match goal with
|
||||
| [ H : ex _ |- _ ===> _ ] => destruct H
|
||||
| [ H : _ /\ _ |- _ ] => destruct H
|
||||
| [ H : _ = _ |- _ ] => rewrite H
|
||||
end; subst rhs.
|
||||
|
||||
Ltac normalize :=
|
||||
simpl; intros; repeat normalize1; repeat normalize2;
|
||||
repeat (match goal with
|
||||
| [ H : ex _ |- _ ===> _ ] => destruct H
|
||||
end; intuition idtac).
|
||||
|
||||
Ltac forAllAtoms p k :=
|
||||
match p with
|
||||
| ?q * ?r => (forAllAtoms q k || forAllAtoms r k) || fail 2
|
||||
| _ => k p
|
||||
end.
|
||||
|
||||
Lemma stb1 : forall p q r,
|
||||
(q * p) * r === q * r * p.
|
||||
Proof.
|
||||
intros; rewrite <- star_assoc; rewrite (star_comm p r); apply star_assoc.
|
||||
Qed.
|
||||
|
||||
Ltac sendToBack part :=
|
||||
repeat match goal with
|
||||
| [ |- context[(?p * part) * ?q] ] => setoid_rewrite (stb1 part p q)
|
||||
| [ |- context[part * ?p] ] => setoid_rewrite (star_comm part p)
|
||||
end.
|
||||
|
||||
Theorem star_cancel' : forall p1 p2 q, p1 ===> p2
|
||||
-> p1 * q ===> p2 * q.
|
||||
Proof.
|
||||
intros; apply star_cancel; auto using himp_refl.
|
||||
Qed.
|
||||
|
||||
Theorem star_cancel'' : forall p q, lift True ===> q
|
||||
-> p ===> p * q.
|
||||
Proof.
|
||||
intros.
|
||||
eapply himp_trans.
|
||||
rewrite extra_lift with (P := True); auto.
|
||||
instantiate (1 := p * q).
|
||||
rewrite star_comm.
|
||||
apply star_cancel; auto.
|
||||
reflexivity.
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
Ltac cancel1 :=
|
||||
match goal with
|
||||
| [ |- _ ===> ?Q ] =>
|
||||
match Q with
|
||||
| _ => is_evar Q; fail 1
|
||||
| ?Q _ => is_evar Q; fail 1
|
||||
| _ => apply himp_refl
|
||||
end
|
||||
| [ |- ?p ===> ?q ] =>
|
||||
forAllAtoms p ltac:(fun p0 =>
|
||||
sendToBack p0;
|
||||
forAllAtoms q ltac:(fun q0 =>
|
||||
sendToBack q0;
|
||||
apply star_cancel'))
|
||||
| _ => progress autorewrite with core
|
||||
end.
|
||||
|
||||
Ltac hide_evars :=
|
||||
repeat match goal with
|
||||
| [ |- ?P ===> _ ] => is_evar P; set P
|
||||
| [ |- _ ===> ?Q ] => is_evar Q; set Q
|
||||
| [ |- context[star ?P _] ] => is_evar P; set P
|
||||
| [ |- context[star _ ?Q] ] => is_evar Q; set Q
|
||||
| [ |- _ ===> (exists v, _ * ?R v) ] => is_evar R; set R
|
||||
end.
|
||||
|
||||
Ltac restore_evars :=
|
||||
repeat match goal with
|
||||
| [ x := _ |- _ ] => subst x
|
||||
end.
|
||||
|
||||
Fixpoint flattenAnds (Ps : list Prop) : Prop :=
|
||||
match Ps with
|
||||
| nil => True
|
||||
| [P] => P
|
||||
| P :: Ps => P /\ flattenAnds Ps
|
||||
end.
|
||||
|
||||
Ltac allPuresFrom k :=
|
||||
match goal with
|
||||
| [ H : ?P |- _ ] =>
|
||||
match type of P with
|
||||
| Prop => generalize dependent H; allPuresFrom ltac:(fun Ps => k (P :: Ps))
|
||||
end
|
||||
| _ => intros; k (@nil Prop)
|
||||
end.
|
||||
|
||||
Ltac whichToQuantify skip foundAlready k :=
|
||||
match goal with
|
||||
| [ x : ?T |- _ ] =>
|
||||
match type of T with
|
||||
| Prop => fail 1
|
||||
| _ =>
|
||||
match skip with
|
||||
| context[x] => fail 1
|
||||
| _ =>
|
||||
match foundAlready with
|
||||
| context[x] => fail 1
|
||||
| _ => (instantiate (1 := lift (x = x)); fail 2)
|
||||
|| (instantiate (1 := fun _ => lift (x = x)); fail 2)
|
||||
|| (whichToQuantify skip (x, foundAlready) k)
|
||||
end
|
||||
end
|
||||
end
|
||||
| _ => k foundAlready
|
||||
end.
|
||||
|
||||
Ltac quantifyOverThem vars e k :=
|
||||
match vars with
|
||||
| tt => k e
|
||||
| (?x, ?vars') =>
|
||||
match e with
|
||||
| context[x] =>
|
||||
match eval pattern x in e with
|
||||
| ?f _ => quantifyOverThem vars' (exis f) k
|
||||
end
|
||||
| _ => quantifyOverThem vars' e k
|
||||
end
|
||||
end.
|
||||
|
||||
Ltac addQuantifiers P k :=
|
||||
whichToQuantify tt tt ltac:(fun vars =>
|
||||
quantifyOverThem vars P k).
|
||||
|
||||
Ltac addQuantifiersSkipping x P k :=
|
||||
whichToQuantify x tt ltac:(fun vars =>
|
||||
quantifyOverThem vars P k).
|
||||
|
||||
Ltac basic_cancel :=
|
||||
normalize; repeat cancel1; intuition eassumption.
|
||||
|
||||
Ltac cancel := hide_evars; normalize; repeat cancel1; restore_evars;
|
||||
repeat match goal with
|
||||
| [ H : True |- _ ] => clear H
|
||||
end;
|
||||
try match goal with
|
||||
| [ |- _ ===> ?p * ?q ] =>
|
||||
((is_evar p; fail 1) || apply star_cancel'')
|
||||
|| ((is_evar q; fail 1) || (rewrite (star_comm p q); apply star_cancel''))
|
||||
end;
|
||||
try match goal with
|
||||
| [ |- ?P ===> _ ] => sendToBack P;
|
||||
match goal with
|
||||
| [ |- ?P ===> ?Q * ?P ] => is_evar Q;
|
||||
rewrite (star_comm Q P);
|
||||
allPuresFrom ltac:(fun Ps =>
|
||||
match Ps with
|
||||
| nil => instantiate (1 := lift True)
|
||||
| _ =>
|
||||
let Ps' := eval simpl in (flattenAnds Ps) in
|
||||
addQuantifiers (lift Ps') ltac:(fun e => instantiate (1 := e))
|
||||
end;
|
||||
basic_cancel)
|
||||
end
|
||||
| [ |- ?P ===> ?Q ] => is_evar Q;
|
||||
allPuresFrom ltac:(fun Ps =>
|
||||
match Ps with
|
||||
| nil => reflexivity
|
||||
| _ =>
|
||||
let Ps' := eval simpl in (flattenAnds Ps) in
|
||||
addQuantifiers (star P (lift Ps')) ltac:(fun e => instantiate (1 := e));
|
||||
basic_cancel
|
||||
end)
|
||||
| [ |- ?P ===> ?Q ?x ] => is_evar Q;
|
||||
allPuresFrom ltac:(fun Ps =>
|
||||
match Ps with
|
||||
| nil => reflexivity
|
||||
| _ =>
|
||||
let Ps' := eval simpl in (flattenAnds Ps) in
|
||||
addQuantifiersSkipping x (star P (lift Ps'))
|
||||
ltac:(fun e => match eval pattern x in e with
|
||||
| ?f _ => instantiate (1 := f)
|
||||
end);
|
||||
basic_cancel
|
||||
end)
|
||||
| [ |- _ ===> _ ] => intuition (try congruence)
|
||||
end; intuition (try eassumption).
|
||||
End Sep.
|
||||
|
||||
|
||||
(* Now we instantiate the generic signature of separation-logic assertions and
|
||||
* connectives. *)
|
||||
Module Import S <: SEP.
|
||||
|
@ -671,8 +229,7 @@ End S.
|
|||
|
||||
Export S.
|
||||
(* Instantiate our big automation engine to these definitions. *)
|
||||
Module Import Se := Sep(S).
|
||||
Export Se.
|
||||
Module Import Se := SepCancel.Make(S).
|
||||
|
||||
|
||||
(* ** Some extra predicates outside the set that the engine knows about *)
|
||||
|
|
|
@ -24,4 +24,5 @@ LambdaCalculusAndTypeSoundness.v
|
|||
TypesAndMutation.v
|
||||
DeepAndShallowEmbeddings_template.v
|
||||
DeepAndShallowEmbeddings.v
|
||||
SepCancel.v
|
||||
SeparationLogic.v
|
||||
|
|
Loading…
Reference in a new issue