mirror of
https://github.com/achlipala/frap.git
synced 2025-01-20 21:46:11 +00:00
ModelChecking: another abstraction example
This commit is contained in:
parent
7aa8e890cf
commit
e3bb90c4a1
1 changed files with 241 additions and 1 deletions
242
ModelChecking.v
242
ModelChecking.v
|
@ -235,7 +235,7 @@ Ltac model_check_step :=
|
|||
repeat ((apply oneStepClosure_empty; simplify)
|
||||
|| (apply oneStepClosure_split; [ simplify;
|
||||
repeat match goal with
|
||||
| [ H : _ |- _ ] => invert H
|
||||
| [ H : _ |- _ ] => invert H; try congruence
|
||||
end; solve [ singletoner ] | ]))
|
||||
| simplify ].
|
||||
|
||||
|
@ -554,3 +554,243 @@ Proof.
|
|||
invert H1.
|
||||
propositional.
|
||||
Qed.
|
||||
|
||||
|
||||
(** * Another abstraction example *)
|
||||
|
||||
(*
|
||||
|
||||
f(int n) {
|
||||
int i, j;
|
||||
|
||||
i = 0;
|
||||
j = 0;
|
||||
while (n > 0) {
|
||||
i = i + n;
|
||||
j = j + n;
|
||||
n = n - 1;
|
||||
}
|
||||
}
|
||||
*)
|
||||
|
||||
Inductive pc :=
|
||||
| i_gets_0
|
||||
| j_gets_0
|
||||
| Loop
|
||||
| i_add_n
|
||||
| j_add_n
|
||||
| n_sub_1
|
||||
| Done.
|
||||
|
||||
Record vars := {
|
||||
N : nat;
|
||||
I : nat;
|
||||
J : nat
|
||||
}.
|
||||
|
||||
Record state := {
|
||||
Pc : pc;
|
||||
Vars : vars
|
||||
}.
|
||||
|
||||
Inductive initial : state -> Prop :=
|
||||
| Init : forall vs, initial {| Pc := i_gets_0; Vars := vs |}.
|
||||
|
||||
Inductive step : state -> state -> Prop :=
|
||||
| Step_i_gets_0 : forall n i j,
|
||||
step {| Pc := i_gets_0; Vars := {| N := n;
|
||||
I := i;
|
||||
J := j |} |}
|
||||
{| Pc := j_gets_0; Vars := {| N := n;
|
||||
I := 0;
|
||||
J := j |} |}
|
||||
| Step_j_gets_0 : forall n i j,
|
||||
step {| Pc := j_gets_0; Vars := {| N := n;
|
||||
I := i;
|
||||
J := j |} |}
|
||||
{| Pc := Loop; Vars := {| N := n;
|
||||
I := i;
|
||||
J := 0 |} |}
|
||||
| Step_Loop_done : forall i j,
|
||||
step {| Pc := Loop; Vars := {| N := 0;
|
||||
I := i;
|
||||
J := j |} |}
|
||||
{| Pc := Done; Vars := {| N := 0;
|
||||
I := i;
|
||||
J := j |} |}
|
||||
| Step_Loop_enter : forall n i j,
|
||||
step {| Pc := Loop; Vars := {| N := S n;
|
||||
I := i;
|
||||
J := j |} |}
|
||||
{| Pc := i_add_n; Vars := {| N := S n;
|
||||
I := i;
|
||||
J := j |} |}
|
||||
| Step_i_add_n : forall n i j,
|
||||
step {| Pc := i_add_n; Vars := {| N := n;
|
||||
I := i;
|
||||
J := j |} |}
|
||||
{| Pc := j_add_n; Vars := {| N := n;
|
||||
I := i + n;
|
||||
J := j |} |}
|
||||
| Step_j_add_n : forall n i j,
|
||||
step {| Pc := j_add_n; Vars := {| N := n;
|
||||
I := i;
|
||||
J := j |} |}
|
||||
{| Pc := n_sub_1; Vars := {| N := n;
|
||||
I := i;
|
||||
J := j + n |} |}
|
||||
| Step_n_sub_1 : forall n i j,
|
||||
step {| Pc := n_sub_1; Vars := {| N := n;
|
||||
I := i;
|
||||
J := j |} |}
|
||||
{| Pc := Loop; Vars := {| N := n - 1;
|
||||
I := i;
|
||||
J := j |} |}.
|
||||
|
||||
Definition loopy_sys := {|
|
||||
Initial := initial;
|
||||
Step := step
|
||||
|}.
|
||||
|
||||
Inductive absvars := Unknown | i_is_0 | i_eq_j | i_eq_j_plus_n.
|
||||
|
||||
Record absstate := {
|
||||
APc : pc;
|
||||
AVars : absvars
|
||||
}.
|
||||
|
||||
Inductive absstep : absstate -> absstate -> Prop :=
|
||||
| AStep_i_gets_0 : forall vs,
|
||||
absstep {| APc := i_gets_0; AVars := vs |}
|
||||
{| APc := j_gets_0; AVars := i_is_0 |}
|
||||
| AStep_j_gets_0_i_is_0 :
|
||||
absstep {| APc := j_gets_0; AVars := i_is_0 |}
|
||||
{| APc := Loop; AVars := i_eq_j |}
|
||||
| AStep_j_gets_0_Other : forall vs,
|
||||
vs <> i_is_0
|
||||
-> absstep {| APc := j_gets_0; AVars := vs |}
|
||||
{| APc := Loop; AVars := Unknown |}
|
||||
| AStep_Loop_done : forall vs,
|
||||
absstep {| APc := Loop; AVars := vs |}
|
||||
{| APc := Done; AVars := vs |}
|
||||
| AStep_Loop_enter : forall vs,
|
||||
absstep {| APc := Loop; AVars := vs |}
|
||||
{| APc := i_add_n; AVars := vs |}
|
||||
| AStep_i_add_n_i_eq_j :
|
||||
absstep {| APc := i_add_n; AVars := i_eq_j |}
|
||||
{| APc := j_add_n; AVars := i_eq_j_plus_n |}
|
||||
| AStep_i_add_n_Other : forall vs,
|
||||
vs <> i_eq_j
|
||||
-> absstep {| APc := i_add_n; AVars := vs |}
|
||||
{| APc := j_add_n; AVars := Unknown |}
|
||||
| AStep_j_add_n_i_eq_j_plus_n :
|
||||
absstep {| APc := j_add_n; AVars := i_eq_j_plus_n |}
|
||||
{| APc := n_sub_1; AVars := i_eq_j |}
|
||||
| AStep_j_add_n_i_Other : forall vs,
|
||||
vs <> i_eq_j_plus_n
|
||||
-> absstep {| APc := j_add_n; AVars := vs |}
|
||||
{| APc := n_sub_1; AVars := Unknown |}
|
||||
| AStep_n_sub_1_bad :
|
||||
absstep {| APc := n_sub_1; AVars := i_eq_j_plus_n |}
|
||||
{| APc := Loop; AVars := Unknown |}
|
||||
| AStep_n_sub_1_good : forall vs,
|
||||
vs <> i_eq_j_plus_n
|
||||
-> absstep {| APc := n_sub_1; AVars := vs |}
|
||||
{| APc := Loop; AVars := vs |}.
|
||||
|
||||
Definition absloopy_sys := {|
|
||||
Initial := { {| APc := i_gets_0; AVars := Unknown |} };
|
||||
Step := absstep
|
||||
|}.
|
||||
|
||||
Inductive Rvars : vars -> absvars -> Prop :=
|
||||
| Rv_Unknown : forall vs, Rvars vs Unknown
|
||||
| Rv_i_is_0 : forall vs, vs.(I) = 0 -> Rvars vs i_is_0
|
||||
| Rv_i_eq_j : forall vs, vs.(I) = vs.(J) -> Rvars vs i_eq_j
|
||||
| Rv_i_eq_j_plus_n : forall vs, vs.(I) = vs.(J) + vs.(N) -> Rvars vs i_eq_j_plus_n.
|
||||
|
||||
Inductive R : state -> absstate -> Prop :=
|
||||
| Rcon : forall pc vs avs, Rvars vs avs -> R {| Pc := pc; Vars := vs |}
|
||||
{| APc := pc; AVars := avs |}.
|
||||
|
||||
Definition loopy_correct (st : state) :=
|
||||
st.(Pc) = Done -> st.(Vars).(I) = st.(Vars).(J).
|
||||
|
||||
Theorem loopy_ok :
|
||||
invariantFor loopy_sys loopy_correct.
|
||||
Proof.
|
||||
eapply invariant_weaken with (invariant1 := invariantViaSimulation R _).
|
||||
apply invariant_simulates with (sys2 := absloopy_sys).
|
||||
|
||||
constructor; simplify.
|
||||
|
||||
invert H.
|
||||
exists {| APc := i_gets_0; AVars := Unknown |}.
|
||||
propositional.
|
||||
constructor.
|
||||
constructor.
|
||||
|
||||
invert H0.
|
||||
|
||||
invert H.
|
||||
exists {| APc := j_gets_0; AVars := i_is_0 |}.
|
||||
propositional; repeat constructor.
|
||||
|
||||
invert H.
|
||||
invert H3.
|
||||
exists {| APc := Loop; AVars := Unknown |}; propositional; repeat constructor; equality.
|
||||
exists {| APc := Loop; AVars := i_eq_j |}; propositional; repeat constructor; equality.
|
||||
exists {| APc := Loop; AVars := Unknown |}; propositional; repeat constructor; equality.
|
||||
exists {| APc := Loop; AVars := Unknown |}; propositional; repeat constructor; equality.
|
||||
|
||||
exists {| APc := Done; AVars := st2.(AVars) |}.
|
||||
invert H; simplify; propositional; repeat constructor; equality.
|
||||
|
||||
exists {| APc := i_add_n; AVars := st2.(AVars) |}.
|
||||
invert H; simplify; propositional; repeat constructor; equality.
|
||||
|
||||
invert H.
|
||||
invert H3.
|
||||
exists {| APc := j_add_n; AVars := Unknown |}; repeat constructor; equality.
|
||||
exists {| APc := j_add_n; AVars := Unknown |}; repeat constructor; equality.
|
||||
exists {| APc := j_add_n; AVars := i_eq_j_plus_n |}; repeat constructor; simplify; equality.
|
||||
exists {| APc := j_add_n; AVars := Unknown |}; repeat constructor; equality.
|
||||
|
||||
invert H.
|
||||
invert H3.
|
||||
exists {| APc := n_sub_1; AVars := Unknown |}; repeat constructor; equality.
|
||||
exists {| APc := n_sub_1; AVars := Unknown |}; repeat constructor; equality.
|
||||
exists {| APc := n_sub_1; AVars := Unknown |}; repeat constructor; equality.
|
||||
exists {| APc := n_sub_1; AVars := i_eq_j |}; repeat constructor; simplify; equality.
|
||||
|
||||
invert H.
|
||||
invert H3.
|
||||
exists {| APc := Loop; AVars := Unknown |}; propositional; repeat constructor; equality.
|
||||
exists {| APc := Loop; AVars := i_is_0 |}; propositional; repeat constructor; equality.
|
||||
exists {| APc := Loop; AVars := i_eq_j |}; propositional; repeat constructor; equality.
|
||||
exists {| APc := Loop; AVars := Unknown |}; propositional; repeat constructor; equality.
|
||||
|
||||
model_check_infer.
|
||||
|
||||
invert 1.
|
||||
invert H0.
|
||||
unfold loopy_correct.
|
||||
simplify.
|
||||
propositional; subst.
|
||||
|
||||
invert H2.
|
||||
|
||||
invert H1.
|
||||
|
||||
invert H2.
|
||||
|
||||
invert H1.
|
||||
invert H.
|
||||
assumption.
|
||||
|
||||
invert H2.
|
||||
|
||||
invert H1.
|
||||
|
||||
invert H2.
|
||||
Qed.
|
||||
|
|
Loading…
Reference in a new issue