From e4442e6e2972794d5465d0ca047252648ff7deb7 Mon Sep 17 00:00:00 2001 From: Adam Chlipala Date: Sun, 14 May 2017 15:43:21 -0400 Subject: [PATCH] SharedMemory: don't need exponentiation after all --- SharedMemory.v | 82 ++++++-------------------------------------------- frap_book.tex | 2 +- 2 files changed, 11 insertions(+), 73 deletions(-) diff --git a/SharedMemory.v b/SharedMemory.v index 425b2ad..018064a 100644 --- a/SharedMemory.v +++ b/SharedMemory.v @@ -748,14 +748,7 @@ Qed. (* The next technical device will require that we bound how many steps of * execution particular commands could run for. We use a conservative - * overapproximation that is easy to compute, phrased as a relation. - * Yes, it is time to get scared, as we must define exponentiation to compute - * large enough time bounds! *) -Fixpoint pow2 (n : nat) : nat := - match n with - | O => 1 - | S n' => pow2 n' * 2 - end. + * overapproximation that is easy to compute, phrased as a relation. *) Inductive boundRunningTime : cmd -> nat -> Prop := | BrtReturn : forall r n, @@ -777,7 +770,9 @@ Inductive boundRunningTime : cmd -> nat -> Prop := | BrtPar : forall c1 c2 n1 n2, boundRunningTime c1 n1 -> boundRunningTime c2 n2 - -> boundRunningTime (Par c1 c2) (pow2 (n1 + n2)). + -> boundRunningTime (Par c1 c2) (S (n1 + n2)). +(* The extra [S] here may seem superfluous, but it helps make a certain + * induction well-founded. *) (* Perhaps surprisingly, there exist commands that have no finite time bounds! * Mixed-embedding languages often have these counterintuitive properties. *) @@ -807,61 +802,6 @@ Proof. linear_arithmetic. Qed. -(* Next, some boring properties of [pow2]. *) - -Lemma pow2_pos : forall n, - pow2 n > 0. -Proof. - induct n; simplify; auto. -Qed. - -Lemma pow2_mono : forall n m, - n < m - -> pow2 n < pow2 m. -Proof. - induct 1; simplify; auto. - specialize (pow2_pos n); linear_arithmetic. -Qed. - -Hint Resolve pow2_mono. - -Lemma pow2_incr : forall n, - n < pow2 n. -Proof. - induct n; simplify; auto. -Qed. - -Hint Resolve pow2_incr. - -Lemma pow2_inv : forall n m, - pow2 n <= m - -> n < m. -Proof. - simplify. - specialize (pow2_incr n). - linear_arithmetic. -Qed. - -Lemma use_pow2 : forall n m k, - pow2 m <= S k - -> n <= m - -> n <= k. -Proof. - simplify. - apply pow2_inv in H. - linear_arithmetic. -Qed. - -Lemma use_pow2' : forall n m k, - pow2 m <= S k - -> n < m - -> pow2 n <= k. -Proof. - simplify. - specialize (@pow2_mono n m). - linear_arithmetic. -Qed. - Hint Constructors boundRunningTime. (* Key property: taking a step of execution lowers the running-time bound. *) @@ -929,8 +869,6 @@ Proof. do 3 eexists; propositional. eauto. invert H. - specialize (pow2_pos (n1 + n2)). - linear_arithmetic. invert H. @@ -1022,9 +960,9 @@ Proof. assert (Hb1 : boundRunningTime c1 n1) by assumption. assert (Hb2 : boundRunningTime c2 n2) by assumption. - eapply IHk in H1; eauto using use_pow2; first_order. + eapply IHk in H1; try linear_arithmetic; first_order. invert H. - eapply IHk in H2; eauto using use_pow2; first_order. + eapply IHk in H2; try linear_arithmetic; first_order. invert H. do 3 eexists; propositional. eauto. @@ -1032,8 +970,8 @@ Proof. cases y. cases p. specialize (boundRunningTime_step Hb2 H3); first_order. - assert (boundRunningTime (Par x1 c) (pow2 (n1 + x3))) by eauto. - eapply IHk in H6; eauto using use_pow2'; first_order. + assert (boundRunningTime (Par x1 c) (S (n1 + x3))) by eauto. + eapply IHk in H6; try linear_arithmetic; first_order. do 3 eexists; propositional. eapply TrcFront. eauto. @@ -1042,8 +980,8 @@ Proof. cases y. cases p. specialize (boundRunningTime_step Hb1 H3); first_order. - assert (boundRunningTime (Par c c2) (pow2 (x2 + n2))) by eauto. - eapply IHk in H6; eauto using use_pow2'; first_order. + assert (boundRunningTime (Par c c2) (S (x2 + n2))) by eauto. + eapply IHk in H6; try linear_arithmetic; first_order. do 3 eexists; propositional. eapply TrcFront. eauto. diff --git a/frap_book.tex b/frap_book.tex index 944e2f2..addbee4 100644 --- a/frap_book.tex +++ b/frap_book.tex @@ -4189,7 +4189,7 @@ $$\infer{\tof{x \leftarrow c_1; c_2(x)}{n_1 + n_2 + 1}}{ \tof{c_1}{n_1} & \forall r. \; \tof{c_2(r)}{n_2} } -\quad \infer{\tof{c_1 || c_2}{2^{n_1 + n_2}}}{ +\quad \infer{\tof{c_1 || c_2}{n_1 + n_2 + 1}}{ \tof{c_1}{n_1} & \tof{c_2}{n_2} }$$