diff --git a/Invariant.v b/Invariant.v index 36047f1..9c06c74 100644 --- a/Invariant.v +++ b/Invariant.v @@ -14,9 +14,9 @@ Definition invariantFor {state} (sys : trsys state) (invariant : state -> Prop) -> invariant s'. Theorem use_invariant : forall {state} (sys : trsys state) (invariant : state -> Prop) s s', - sys.(Step)^* s s' + invariantFor sys invariant + -> sys.(Step)^* s s' -> sys.(Initial) s - -> invariantFor sys invariant -> invariant s'. Proof. firstorder. @@ -24,8 +24,8 @@ Qed. Theorem invariantFor_monotone : forall {state} (sys : trsys state) (invariant1 invariant2 : state -> Prop), - (forall s, invariant1 s -> invariant2 s) - -> invariantFor sys invariant1 + invariantFor sys invariant1 + -> (forall s, invariant1 s -> invariant2 s) -> invariantFor sys invariant2. Proof. unfold invariantFor; intuition eauto.