mirror of
https://github.com/achlipala/frap.git
synced 2024-12-01 00:26:18 +00:00
AbstractInterpretation: proved a simulation and started using it
This commit is contained in:
parent
d0d6b87a1d
commit
e892c8dbab
2 changed files with 785 additions and 326 deletions
|
@ -8,41 +8,215 @@ Require Import Frap Imp.
|
|||
Set Implicit Arguments.
|
||||
|
||||
|
||||
Module SimpleAbstractInterpreter.
|
||||
Record absint := {
|
||||
Typeof :> Set;
|
||||
(* This [:>] notation lets us treat any [absint] as its [Typeof],
|
||||
* automatically. *)
|
||||
Const : nat -> Typeof;
|
||||
Top : Typeof;
|
||||
(* A lattice element that describes all concrete values *)
|
||||
Constant : nat -> Typeof;
|
||||
(* Most accurate representation of a constant *)
|
||||
Add : Typeof -> Typeof -> Typeof;
|
||||
Subtract : Typeof -> Typeof -> Typeof;
|
||||
Multiply : Typeof -> Typeof -> Typeof;
|
||||
(* Abstract versions of arithmetic operators *)
|
||||
Join : Typeof -> Typeof -> Typeof;
|
||||
(* Least upper bound of two elements *)
|
||||
Represents : nat -> Typeof -> Prop
|
||||
(* Which lattice elements represent which numbers? *)
|
||||
}.
|
||||
|
||||
Definition absint_sound (a : absint) :=
|
||||
(* [Const] gives accurate answers. *)
|
||||
(forall n, a.(Represents) n (a.(Const) n))
|
||||
Record absint_sound (a : absint) : Prop := {
|
||||
TopSound : forall n, a.(Represents) n a.(Top);
|
||||
|
||||
(* [Join] really does return an upper bound. *)
|
||||
/\ (forall x y n, a.(Represents) n x
|
||||
-> a.(Represents) n (a.(Join) x y))
|
||||
/\ (forall x y n, a.(Represents) n y
|
||||
-> a.(Represents) n (a.(Join) x y)).
|
||||
ConstSound : forall n, a.(Represents) n (a.(Constant) n);
|
||||
|
||||
AddSound : forall n na m ma, a.(Represents) n na
|
||||
-> a.(Represents) m ma
|
||||
-> a.(Represents) (n + m) (a.(Add) na ma);
|
||||
SubtractSound: forall n na m ma, a.(Represents) n na
|
||||
-> a.(Represents) m ma
|
||||
-> a.(Represents) (n - m) (a.(Subtract) na ma);
|
||||
MultiplySound : forall n na m ma, a.(Represents) n na
|
||||
-> a.(Represents) m ma
|
||||
-> a.(Represents) (n * m) (a.(Multiply) na ma);
|
||||
|
||||
AddMonotone : forall na na' ma ma', (forall n, a.(Represents) n na -> a.(Represents) n na')
|
||||
-> (forall n, a.(Represents) n ma -> a.(Represents) n ma')
|
||||
-> (forall n, a.(Represents) n (a.(Add) na ma)
|
||||
-> a.(Represents) n (a.(Add) na' ma'));
|
||||
SubtractMonotone : forall na na' ma ma', (forall n, a.(Represents) n na -> a.(Represents) n na')
|
||||
-> (forall n, a.(Represents) n ma -> a.(Represents) n ma')
|
||||
-> (forall n, a.(Represents) n (a.(Subtract) na ma)
|
||||
-> a.(Represents) n (a.(Subtract) na' ma'));
|
||||
MultiplyMonotone : forall na na' ma ma', (forall n, a.(Represents) n na -> a.(Represents) n na')
|
||||
-> (forall n, a.(Represents) n ma -> a.(Represents) n ma')
|
||||
-> (forall n, a.(Represents) n (a.(Multiply) na ma)
|
||||
-> a.(Represents) n (a.(Multiply) na' ma'));
|
||||
|
||||
JoinSoundLeft : forall x y n, a.(Represents) n x
|
||||
-> a.(Represents) n (a.(Join) x y);
|
||||
JoinSoundRight : forall x y n, a.(Represents) n y
|
||||
-> a.(Represents) n (a.(Join) x y)
|
||||
}.
|
||||
|
||||
Hint Resolve TopSound ConstSound AddSound SubtractSound MultiplySound
|
||||
AddMonotone SubtractMonotone MultiplyMonotone
|
||||
JoinSoundLeft JoinSoundRight.
|
||||
|
||||
Definition astate (a : absint) := fmap var a.
|
||||
Definition astates (a : absint) := fmap cmd (astate a).
|
||||
|
||||
Definition compatible1 a (s : astate a) (v : valuation) (c : cmd) : Prop :=
|
||||
forall x n xa, v $? x = Some n
|
||||
-> s $? x = Some xa
|
||||
-> a.(Represents) n xa.
|
||||
Fixpoint absint_interp (e : arith) a (s : astate a) : a :=
|
||||
match e with
|
||||
| Const n => a.(Constant) n
|
||||
| Var x => match s $? x with
|
||||
| None => a.(Top)
|
||||
| Some xa => xa
|
||||
end
|
||||
| Plus e1 e2 => a.(Add) (absint_interp e1 s) (absint_interp e2 s)
|
||||
| Minus e1 e2 => a.(Subtract) (absint_interp e1 s) (absint_interp e2 s)
|
||||
| Times e1 e2 => a.(Multiply) (absint_interp e1 s) (absint_interp e2 s)
|
||||
end.
|
||||
|
||||
Inductive compatible a (ss : astates a) (v : valuation) (c : cmd) : Prop :=
|
||||
| Compatible : forall s,
|
||||
ss $? c = Some s
|
||||
-> compatible1 s v c
|
||||
-> compatible ss v c.
|
||||
Fixpoint absint_step a (s : astate a) (c : cmd) (wrap : cmd -> cmd) : option (astates a) :=
|
||||
match c with
|
||||
| Skip => None
|
||||
| Assign x e => Some ($0 $+ (wrap Skip, s $+ (x, absint_interp e s)))
|
||||
| Sequence c1 c2 =>
|
||||
match absint_step s c1 (fun c => wrap (Sequence c c2)) with
|
||||
| None => Some ($0 $+ (wrap c2, s))
|
||||
| v => v
|
||||
end
|
||||
| If e then_ else_ => Some ($0 $+ (wrap then_, s) $+ (wrap else_, s))
|
||||
| While e body => Some ($0 $+ (wrap Skip, s) $+ (wrap (Sequence body (While e body)), s))
|
||||
end.
|
||||
|
||||
Definition compatible1 a (s : astate a) (v : valuation) : Prop :=
|
||||
forall x xa, s $? x = Some xa
|
||||
-> exists n, v $? x = Some n
|
||||
/\ a.(Represents) n xa.
|
||||
|
||||
Theorem absint_interp_ok : forall a, absint_sound a
|
||||
-> forall (s : astate a) v e,
|
||||
compatible1 s v
|
||||
-> a.(Represents) (interp e v) (absint_interp e s).
|
||||
Proof.
|
||||
induct e; simplify; eauto.
|
||||
cases (s $? x); auto.
|
||||
unfold compatible1 in H0.
|
||||
apply H0 in Heq.
|
||||
invert Heq.
|
||||
propositional.
|
||||
rewrite H2.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Lemma compatible1_add : forall a (s : astate a) v x na n,
|
||||
compatible1 s v
|
||||
-> a.(Represents) n na
|
||||
-> compatible1 (s $+ (x, na)) (v $+ (x, n)).
|
||||
Proof.
|
||||
unfold compatible1; simplify.
|
||||
cases (x ==v x0); simplify; eauto.
|
||||
invert H1; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve compatible1_add absint_interp_ok.
|
||||
|
||||
Lemma command_equal : forall c1 c2 : cmd, sumbool (c1 = c2) (c1 <> c2).
|
||||
Proof.
|
||||
repeat decide equality.
|
||||
Qed.
|
||||
|
||||
Theorem absint_step_ok : forall a, absint_sound a
|
||||
-> forall (s : astate a) v, compatible1 s v
|
||||
-> forall c v' c', step (v, c) (v', c')
|
||||
-> forall wrap, exists ss s', absint_step s c wrap = Some ss
|
||||
/\ ss $? wrap c' = Some s'
|
||||
/\ compatible1 s' v'.
|
||||
Proof.
|
||||
induct 2; simplify.
|
||||
|
||||
do 2 eexists; propositional.
|
||||
simplify; equality.
|
||||
eauto.
|
||||
|
||||
eapply IHstep in H0; auto.
|
||||
invert H0.
|
||||
invert H2.
|
||||
propositional.
|
||||
rewrite H2.
|
||||
eauto.
|
||||
|
||||
do 2 eexists; propositional.
|
||||
simplify; equality.
|
||||
assumption.
|
||||
|
||||
do 2 eexists; propositional.
|
||||
cases (command_equal (wrap c') (wrap else_)).
|
||||
simplify; equality.
|
||||
simplify; equality.
|
||||
assumption.
|
||||
|
||||
do 2 eexists; propositional.
|
||||
simplify; equality.
|
||||
assumption.
|
||||
|
||||
do 2 eexists; propositional.
|
||||
simplify; equality.
|
||||
assumption.
|
||||
|
||||
do 2 eexists; propositional.
|
||||
cases (command_equal (wrap Skip) (wrap (body;; while e loop body done))).
|
||||
simplify; equality.
|
||||
simplify; equality.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Inductive abs_step a : astate a * cmd -> astate a * cmd -> Prop :=
|
||||
| AbsStep : forall s c ss s' c',
|
||||
absint_step s c (fun x => x) = Some ss
|
||||
-> ss $? c' = Some s'
|
||||
-> abs_step (s, c) (s', c').
|
||||
|
||||
Hint Constructors abs_step.
|
||||
|
||||
Definition absint_trsys a (c : cmd) := {|
|
||||
Initial := {($0, c)};
|
||||
Step := abs_step (a := a)
|
||||
|}.
|
||||
|
||||
Inductive Rabsint a : valuation * cmd -> astate a * cmd -> Prop :=
|
||||
| RAbsint : forall v s c,
|
||||
compatible1 s v
|
||||
-> Rabsint (v, c) (s, c).
|
||||
|
||||
Hint Constructors abs_step Rabsint.
|
||||
|
||||
Theorem absint_simulates : forall a v c,
|
||||
absint_sound a
|
||||
-> simulates (Rabsint (a := a)) (trsys_of v c) (absint_trsys a c).
|
||||
Proof.
|
||||
simplify.
|
||||
constructor; simplify.
|
||||
|
||||
exists ($0, c); propositional.
|
||||
subst.
|
||||
constructor.
|
||||
unfold compatible1.
|
||||
simplify.
|
||||
equality.
|
||||
|
||||
invert H0.
|
||||
cases st1'.
|
||||
eapply absint_step_ok in H1; eauto.
|
||||
invert H1.
|
||||
invert H0.
|
||||
propositional.
|
||||
eauto.
|
||||
Qed.
|
||||
|
||||
Definition merge_astate a : astate a -> astate a -> astate a :=
|
||||
merge (fun x y =>
|
||||
|
@ -69,18 +243,16 @@ Definition merge_astates a : astates a -> astates a -> astates a :=
|
|||
Inductive oneStepClosure a : astates a -> astates a -> Prop :=
|
||||
| OscNil :
|
||||
oneStepClosure $0 $0
|
||||
| OscCons : forall ss c s ss' ss'',
|
||||
(forall v c' v', step (v, c) (v', c')
|
||||
-> compatible1 s v c
|
||||
-> compatible ss' v' c')
|
||||
-> oneStepClosure ss ss''
|
||||
-> oneStepClosure (ss $+ (c, s)) (merge_astates ss' ss'').
|
||||
| OscCons : forall ss c s ss',
|
||||
oneStepClosure ss ss'
|
||||
-> oneStepClosure (ss $+ (c, s)) (match absint_step s c (fun x => x) with
|
||||
| None => ss'
|
||||
| Some ss'' => merge_astates ss'' ss'
|
||||
end).
|
||||
|
||||
Inductive interpret a : astates a -> astates a -> Prop :=
|
||||
| InterpretDone : forall ss,
|
||||
(forall v c, compatible ss v c
|
||||
-> forall v' c', step (v, c) (v', c')
|
||||
-> compatible ss v' c')
|
||||
oneStepClosure ss ss
|
||||
-> interpret ss ss
|
||||
|
||||
| InterpretStep : forall ss ss' ss'',
|
||||
|
@ -88,45 +260,259 @@ Inductive interpret a : astates a -> astates a -> Prop :=
|
|||
-> interpret (merge_astates ss ss') ss''
|
||||
-> interpret ss ss''.
|
||||
|
||||
Lemma interpret_sound' : forall v c a (ss ss' : astates a),
|
||||
interpret ss ss'
|
||||
-> ss $? c = Some $0
|
||||
-> invariantFor (trsys_of v c) (fun p => compatible ss' (fst p) (snd p)).
|
||||
Definition subsumed a (s1 s2 : astate a) :=
|
||||
forall x, match s1 $? x with
|
||||
| None => s2 $? x = None
|
||||
| Some xa1 =>
|
||||
forall xa2, s2 $? x = Some xa2
|
||||
-> forall n, a.(Represents) n xa1
|
||||
-> a.(Represents) n xa2
|
||||
end.
|
||||
|
||||
Theorem subsumed_refl : forall a (s : astate a),
|
||||
subsumed s s.
|
||||
Proof.
|
||||
induct 1; simplify.
|
||||
unfold subsumed; simplify.
|
||||
cases (s $? x); equality.
|
||||
Qed.
|
||||
|
||||
apply invariant_induction; simplify; propositional; subst; simplify.
|
||||
Hint Resolve subsumed_refl.
|
||||
|
||||
Definition subsumeds a (ss1 ss2 : astates a) :=
|
||||
forall c s1, ss1 $? c = Some s1
|
||||
-> exists s2, ss2 $? c = Some s2
|
||||
/\ subsumed s1 s2.
|
||||
|
||||
Theorem subsumeds_refl : forall a (ss : astates a),
|
||||
subsumeds ss ss.
|
||||
Proof.
|
||||
unfold subsumeds; simplify; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve subsumeds_refl.
|
||||
|
||||
Lemma oneStepClosure_sound : forall a, absint_sound a
|
||||
-> forall ss ss' : astates a, oneStepClosure ss ss'
|
||||
-> forall c s s' c', ss $? c = Some s
|
||||
-> abs_step (s, c) (s', c')
|
||||
-> exists s'', ss' $? c' = Some s''
|
||||
/\ subsumed s' s''.
|
||||
Proof.
|
||||
induct 2; simplify.
|
||||
|
||||
econstructor.
|
||||
eassumption.
|
||||
unfold compatible1.
|
||||
simplify.
|
||||
equality.
|
||||
|
||||
cases s; cases s'; simplify.
|
||||
eapply H.
|
||||
cases (command_equal c c0); subst; simplify.
|
||||
|
||||
invert H1.
|
||||
invert H2.
|
||||
rewrite H5.
|
||||
unfold merge_astates; simplify.
|
||||
rewrite H7.
|
||||
cases (ss' $? c').
|
||||
eexists; propositional.
|
||||
unfold subsumed; simplify.
|
||||
unfold merge_astate; simplify.
|
||||
cases (s' $? x); try equality.
|
||||
cases (a0 $? x); simplify; try equality.
|
||||
invert H1; eauto.
|
||||
eauto.
|
||||
|
||||
apply IHoneStepClosure in H2; auto.
|
||||
invert H2; propositional.
|
||||
cases (absint_step s c (fun x => x)); eauto.
|
||||
unfold merge_astates; simplify.
|
||||
rewrite H2.
|
||||
cases (a0 $? c'); eauto.
|
||||
eexists; propositional.
|
||||
unfold subsumed; simplify.
|
||||
unfold merge_astate; simplify.
|
||||
specialize (H4 x0).
|
||||
cases (s' $? x0).
|
||||
cases (a1 $? x0); try equality.
|
||||
cases (x $? x0); try equality.
|
||||
invert 1.
|
||||
eauto.
|
||||
|
||||
rewrite H4.
|
||||
cases (a1 $? x0); equality.
|
||||
Qed.
|
||||
|
||||
Lemma subsumed_add : forall a, absint_sound a
|
||||
-> forall (s1 s2 : astate a) x v1 v2,
|
||||
subsumed s1 s2
|
||||
-> (forall n, a.(Represents) n v1 -> a.(Represents) n v2)
|
||||
-> subsumed (s1 $+ (x, v1)) (s2 $+ (x, v2)).
|
||||
Proof.
|
||||
unfold subsumed; simplify.
|
||||
cases (x ==v x0); subst; simplify; eauto.
|
||||
invert H2; eauto.
|
||||
specialize (H0 x0); eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve subsumed_add.
|
||||
|
||||
Lemma subsumeds_add : forall a (ss1 ss2 : astates a) c s1 s2,
|
||||
subsumeds ss1 ss2
|
||||
-> subsumed s1 s2
|
||||
-> subsumeds (ss1 $+ (c, s1)) (ss2 $+ (c, s2)).
|
||||
Proof.
|
||||
unfold subsumeds; simplify.
|
||||
cases (command_equal c c0); subst; simplify; eauto.
|
||||
invert H1; eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve subsumeds_add.
|
||||
|
||||
Lemma subsumed_use : forall a (s s' : astate a) x n t0 t,
|
||||
s $? x = Some t0
|
||||
-> subsumed s s'
|
||||
-> s' $? x = Some t
|
||||
-> Represents a n t0
|
||||
-> Represents a n t.
|
||||
Proof.
|
||||
unfold subsumed; simplify.
|
||||
specialize (H0 x).
|
||||
rewrite H in H0.
|
||||
eauto.
|
||||
Qed.
|
||||
|
||||
Lemma subsumed_use_empty : forall a (s s' : astate a) x n t0 t,
|
||||
s $? x = None
|
||||
-> subsumed s s'
|
||||
-> s' $? x = Some t
|
||||
-> Represents a n t0
|
||||
-> Represents a n t.
|
||||
Proof.
|
||||
unfold subsumed; simplify.
|
||||
specialize (H0 x).
|
||||
rewrite H in H0.
|
||||
equality.
|
||||
Qed.
|
||||
|
||||
Hint Resolve subsumed_use subsumed_use_empty.
|
||||
|
||||
Lemma absint_interp_monotone : forall a, absint_sound a
|
||||
-> forall (s : astate a) e s' n,
|
||||
a.(Represents) n (absint_interp e s)
|
||||
-> subsumed s s'
|
||||
-> a.(Represents) n (absint_interp e s').
|
||||
Proof.
|
||||
induct e; simplify; eauto.
|
||||
|
||||
cases (s' $? x); eauto.
|
||||
cases (s $? x); eauto.
|
||||
Qed.
|
||||
|
||||
Hint Resolve absint_interp_monotone.
|
||||
|
||||
Lemma absint_step_monotone_None : forall a (s : astate a) c wrap,
|
||||
absint_step s c wrap = None
|
||||
-> forall s' : astate a, absint_step s' c wrap = None.
|
||||
Proof.
|
||||
induct c; simplify; try equality.
|
||||
cases (absint_step s c1 (fun c => wrap (c;; c2))); equality.
|
||||
Qed.
|
||||
|
||||
Lemma absint_step_monotone : forall a, absint_sound a
|
||||
-> forall (s : astate a) c wrap ss,
|
||||
absint_step s c wrap = Some ss
|
||||
-> forall s', subsumed s s'
|
||||
-> exists ss', absint_step s' c wrap = Some ss'
|
||||
/\ subsumeds ss ss'.
|
||||
Proof.
|
||||
induct c; simplify.
|
||||
|
||||
equality.
|
||||
|
||||
invert H0.
|
||||
eexists; propositional.
|
||||
eauto.
|
||||
apply subsumeds_add; eauto.
|
||||
|
||||
cases (absint_step s c1 (fun c => wrap (c;; c2))).
|
||||
|
||||
invert H0.
|
||||
eapply IHc1 in Heq; eauto.
|
||||
invert Heq; propositional.
|
||||
rewrite H2; eauto.
|
||||
|
||||
invert H0.
|
||||
eapply absint_step_monotone_None in Heq; eauto.
|
||||
rewrite Heq; eauto.
|
||||
|
||||
invert H0; eauto.
|
||||
|
||||
invert H0; eauto.
|
||||
Qed.
|
||||
|
||||
Lemma abs_step_monotone : forall a, absint_sound a
|
||||
-> forall (s : astate a) c s' c',
|
||||
abs_step (s, c) (s', c')
|
||||
-> forall s1, subsumed s s1
|
||||
-> exists s1', abs_step (s1, c) (s1', c')
|
||||
/\ subsumed s' s1'.
|
||||
Proof.
|
||||
invert 2; simplify.
|
||||
eapply absint_step_monotone in H4; eauto.
|
||||
invert H4; propositional.
|
||||
apply H3 in H6.
|
||||
invert H6; propositional; eauto.
|
||||
Qed.
|
||||
|
||||
Lemma subsumed_trans : forall a (s1 s2 s3 : astate a),
|
||||
subsumed s1 s2
|
||||
-> subsumed s2 s3
|
||||
-> subsumed s1 s3.
|
||||
Proof.
|
||||
unfold subsumed; simplify.
|
||||
specialize (H x); specialize (H0 x).
|
||||
cases (s1 $? x); simplify.
|
||||
cases (s2 $? x); eauto.
|
||||
cases (s2 $? x); eauto.
|
||||
equality.
|
||||
Qed.
|
||||
|
||||
Lemma interpret_sound' : forall c a, absint_sound a
|
||||
-> forall ss ss' : astates a, interpret ss ss'
|
||||
-> ss $? c = Some $0
|
||||
-> invariantFor (absint_trsys a c) (fun p => exists s, ss' $? snd p = Some s
|
||||
/\ subsumed (fst p) s).
|
||||
Proof.
|
||||
induct 2; simplify.
|
||||
|
||||
apply invariant_induction; simplify; propositional; subst; simplify; eauto.
|
||||
|
||||
invert H2; propositional.
|
||||
cases s.
|
||||
cases s'.
|
||||
simplify.
|
||||
eapply abs_step_monotone in H3; eauto.
|
||||
invert H3; propositional.
|
||||
eapply oneStepClosure_sound in H3; eauto.
|
||||
invert H3; propositional.
|
||||
eexists; propositional.
|
||||
eassumption.
|
||||
assumption.
|
||||
eauto using subsumed_trans.
|
||||
|
||||
apply IHinterpret.
|
||||
unfold merge_astates; simplify.
|
||||
rewrite H1.
|
||||
rewrite H2.
|
||||
cases (ss' $? c); trivial.
|
||||
unfold merge_astate; simplify.
|
||||
f_equal.
|
||||
maps_equal.
|
||||
unfold merge_astate; simplify.
|
||||
trivial.
|
||||
Qed.
|
||||
|
||||
Theorem interpret_sound : forall v c a (ss : astates a),
|
||||
interpret ($0 $+ (c, $0)) ss
|
||||
-> invariantFor (trsys_of v c) (fun p => compatible ss (fst p) (snd p)).
|
||||
Theorem interpret_sound : forall c a (ss : astates a),
|
||||
absint_sound a
|
||||
-> interpret ($0 $+ (c, $0)) ss
|
||||
-> invariantFor (absint_trsys a c) (fun p => exists s, ss $? snd p = Some s
|
||||
/\ subsumed (fst p) s).
|
||||
Proof.
|
||||
simplify.
|
||||
eapply interpret_sound'.
|
||||
eassumption.
|
||||
simplify.
|
||||
trivial.
|
||||
eapply interpret_sound'; eauto.
|
||||
simplify; equality.
|
||||
Qed.
|
||||
|
||||
|
||||
|
@ -160,6 +546,14 @@ Proof.
|
|||
propositional.
|
||||
Qed.
|
||||
|
||||
Theorem odd_notEven : forall n, isOdd n -> ~isEven n.
|
||||
Proof.
|
||||
propositional.
|
||||
invert H.
|
||||
invert H0.
|
||||
linear_arithmetic.
|
||||
Qed.
|
||||
|
||||
Theorem isEven_0 : isEven 0.
|
||||
Proof.
|
||||
exists 0; linear_arithmetic.
|
||||
|
@ -198,6 +592,31 @@ Fixpoint parity_const (n : nat) :=
|
|||
| S n' => parity_flip (parity_const n')
|
||||
end.
|
||||
|
||||
Definition parity_add (x y : parity) :=
|
||||
match x, y with
|
||||
| Even, Even => Even
|
||||
| Odd, Odd => Even
|
||||
| Even, Odd => Odd
|
||||
| Odd, Even => Odd
|
||||
| _, _ => Either
|
||||
end.
|
||||
|
||||
Definition parity_subtract (x y : parity) :=
|
||||
match x, y with
|
||||
| Even, Even => Even
|
||||
| _, _ => Either
|
||||
end.
|
||||
(* Note subtleties with [Either]s above, to deal with underflow at zero! *)
|
||||
|
||||
Definition parity_multiply (x y : parity) :=
|
||||
match x, y with
|
||||
| Even, Even => Even
|
||||
| Odd, Odd => Odd
|
||||
| Even, Odd => Even
|
||||
| Odd, Even => Even
|
||||
| _, _ => Either
|
||||
end.
|
||||
|
||||
Definition parity_join (x y : parity) :=
|
||||
match x, y with
|
||||
| Even, Even => Even
|
||||
|
@ -218,7 +637,11 @@ Inductive parity_rep : nat -> parity -> Prop :=
|
|||
Hint Constructors parity_rep.
|
||||
|
||||
Definition parity_absint := {|
|
||||
Const := parity_const;
|
||||
Top := Either;
|
||||
Constant := parity_const;
|
||||
Add := parity_add;
|
||||
Subtract := parity_subtract;
|
||||
Multiply := parity_multiply;
|
||||
Join := parity_join;
|
||||
Represents := parity_rep
|
||||
|}.
|
||||
|
@ -234,15 +657,65 @@ Qed.
|
|||
|
||||
Hint Resolve parity_const_sound.
|
||||
|
||||
Lemma even_not_odd :
|
||||
(forall n, parity_rep n Even -> parity_rep n Odd)
|
||||
-> False.
|
||||
Proof.
|
||||
simplify.
|
||||
specialize (H 0).
|
||||
assert (parity_rep 0 Even) by eauto.
|
||||
apply H in H0.
|
||||
invert H0.
|
||||
apply H1.
|
||||
auto.
|
||||
Qed.
|
||||
|
||||
Lemma odd_not_even :
|
||||
(forall n, parity_rep n Odd -> parity_rep n Even)
|
||||
-> False.
|
||||
Proof.
|
||||
simplify.
|
||||
specialize (H 1).
|
||||
assert (parity_rep 1 Odd) by eauto.
|
||||
apply H in H0.
|
||||
invert H0.
|
||||
invert H1.
|
||||
linear_arithmetic.
|
||||
Qed.
|
||||
|
||||
Hint Resolve even_not_odd odd_not_even.
|
||||
|
||||
Theorem parity_sound : absint_sound parity_absint.
|
||||
Proof.
|
||||
unfold absint_sound; propositional.
|
||||
|
||||
simplify; eauto.
|
||||
|
||||
invert H; cases y; simplify; eauto.
|
||||
|
||||
invert H; cases x; simplify; eauto.
|
||||
constructor; simplify; eauto;
|
||||
repeat match goal with
|
||||
| [ H : parity_rep _ _ |- _ ] => invert H
|
||||
| [ H : ~isEven _ |- _ ] => apply notEven_odd in H; invert H
|
||||
| [ H : isEven _ |- _ ] => invert H
|
||||
| [ p : parity |- _ ] => cases p; simplify; try equality
|
||||
end; try solve [ exfalso; eauto ]; try (constructor; try apply odd_notEven).
|
||||
exists (x0 + x); ring.
|
||||
exists (x0 + x); ring.
|
||||
exists (x0 + x); ring.
|
||||
exists (x0 + x + 1); ring.
|
||||
exists (x - x0); linear_arithmetic.
|
||||
exists (x * x0 * 2); ring.
|
||||
exists ((x * 2 + 1) * x0); ring.
|
||||
exists ((x * 2 + 1) * x0); ring.
|
||||
exists (2 * x * x0 + x + x0); ring.
|
||||
exists x; ring.
|
||||
exists x; ring.
|
||||
exists x; ring.
|
||||
exists x; ring.
|
||||
exists x; ring.
|
||||
exists x; ring.
|
||||
exists x; ring.
|
||||
exists x; ring.
|
||||
exists x; ring.
|
||||
exists x; ring.
|
||||
exists x; ring.
|
||||
exists x0; ring.
|
||||
exists x0; ring.
|
||||
Qed.
|
||||
|
||||
Definition loopy :=
|
||||
|
@ -253,46 +726,6 @@ Definition loopy :=
|
|||
"n" <- "n" - 2
|
||||
done.
|
||||
|
||||
Theorem compatible_skip : forall (s : astate parity_absint) v c c' m,
|
||||
compatible1 s v c
|
||||
-> compatible (m $+ (c', s)) v c'.
|
||||
Proof.
|
||||
unfold compatible1; simplify.
|
||||
econstructor.
|
||||
simplify; equality.
|
||||
auto.
|
||||
Qed.
|
||||
|
||||
Theorem compatible_skip2 : forall (s : astate parity_absint) v c c' m c'' s',
|
||||
compatible1 s v c
|
||||
-> c'' <> c'
|
||||
-> compatible (m $+ (c', s) $+ (c'', s')) v c'.
|
||||
Proof.
|
||||
unfold compatible1; simplify.
|
||||
econstructor.
|
||||
simplify; equality.
|
||||
auto.
|
||||
Qed.
|
||||
|
||||
Theorem compatible_const : forall (s : astate parity_absint) v c c' x n,
|
||||
compatible1 s v c
|
||||
-> compatible ($0 $+ (c', s $+ (x, parity_const n))) (v $+ (x, n)) c'.
|
||||
Proof.
|
||||
unfold compatible1; simplify.
|
||||
econstructor.
|
||||
simplify; equality.
|
||||
unfold compatible1.
|
||||
simplify.
|
||||
cases (x ==v x0); simplify.
|
||||
invert H1.
|
||||
invert H0.
|
||||
eauto.
|
||||
|
||||
eapply H.
|
||||
eassumption.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Hint Rewrite merge_empty1 merge_empty2 using solve [ eauto 1 ].
|
||||
Hint Rewrite merge_empty1_alt merge_empty2_alt using congruence.
|
||||
|
||||
|
@ -367,7 +800,32 @@ Proof.
|
|||
eapply invariant_weaken.
|
||||
|
||||
unfold easy.
|
||||
eapply invariant_simulates.
|
||||
apply absint_simulates with (a := parity_absint).
|
||||
apply parity_sound.
|
||||
|
||||
apply interpret_sound.
|
||||
apply parity_sound.
|
||||
|
||||
Ltac interpret1 := eapply InterpretStep; [ repeat (apply OscNil || apply OscCons)
|
||||
| unfold merge_astates, merge_astate;
|
||||
simplify; repeat simplify_map ].
|
||||
|
||||
interpret1.
|
||||
interpret1.
|
||||
interpret1.
|
||||
|
||||
eapply InterpretStep.
|
||||
repeat (apply OscNil || apply OscCons).
|
||||
simplify.
|
||||
unfold merge_astates, merge_astate.
|
||||
simplify.
|
||||
|
||||
interpret1.
|
||||
|
||||
simplify.
|
||||
|
||||
simplify_map.
|
||||
|
||||
Ltac interpret1 :=
|
||||
eapply InterpretStep; [ (repeat (apply OscNil || eapply OscCons);
|
||||
|
|
3
Map.v
3
Map.v
|
@ -126,7 +126,8 @@ Module Type S.
|
|||
|
||||
Hint Resolve includes_lookup includes_add empty_includes.
|
||||
|
||||
Hint Rewrite lookup_empty lookup_add_eq lookup_add_ne lookup_remove_eq lookup_remove_ne lookup_merge using congruence.
|
||||
Hint Rewrite lookup_empty lookup_add_eq lookup_add_ne lookup_remove_eq lookup_remove_ne
|
||||
lookup_merge using congruence.
|
||||
|
||||
Hint Rewrite dom_empty dom_add.
|
||||
|
||||
|
|
Loading…
Reference in a new issue