mirror of
https://github.com/achlipala/frap.git
synced 2024-11-10 00:07:51 +00:00
Merge branch 'master' of ssh://schizomaniac.net//home/adamc/git-root/frap
This commit is contained in:
commit
ea371df876
1 changed files with 37 additions and 15 deletions
|
@ -428,16 +428,22 @@ Proof.
|
|||
exists (fun p q => exists r, x p r /\ x0 r q).
|
||||
first_order.
|
||||
|
||||
eapply H0 in H5; eauto.
|
||||
match goal with
|
||||
| [ H : _, H' : x _ _ |- _ ] => eapply H in H'; eauto; []
|
||||
end.
|
||||
first_order.
|
||||
eapply refines_trans' in H7; eauto.
|
||||
eapply refines_trans' with (R := x0) in H7; eauto.
|
||||
first_order.
|
||||
|
||||
eapply H3 in H6; eauto.
|
||||
match goal with
|
||||
| [ H : _, H' : x _ _ |- _ ] => eapply H in H'; eauto; []
|
||||
end.
|
||||
first_order.
|
||||
eapply refines_trans' in H7; eauto.
|
||||
eapply refines_trans' with (R := x0) in H7; eauto.
|
||||
first_order.
|
||||
eapply H1 in H8; eauto.
|
||||
match goal with
|
||||
| [ H : _, H' : x0 _ _ |- _ ] => eapply H in H'; eauto; []
|
||||
end.
|
||||
first_order.
|
||||
eauto 8 using trc_trans.
|
||||
Qed.
|
||||
|
@ -542,9 +548,13 @@ Proof.
|
|||
eapply refines_Dup_Action in H5; eauto.
|
||||
first_order.
|
||||
eexists; propositional.
|
||||
apply trc_trans with (x1 || pr2').
|
||||
match goal with
|
||||
| [ _ : lstepSilent^* pr1' ?x |- _ ] => apply trc_trans with (x || pr2')
|
||||
end.
|
||||
eauto.
|
||||
apply trc_trans with (x1 || x).
|
||||
match goal with
|
||||
| [ _ : lstepSilent^* pr2' ?x' |- lstepSilent^* (?x || _) _ ] => eapply trc_trans with (x || x')
|
||||
end.
|
||||
eauto.
|
||||
apply trc_one.
|
||||
eauto.
|
||||
|
@ -553,9 +563,13 @@ Proof.
|
|||
eapply refines_Dup_Action in H5; eauto.
|
||||
first_order.
|
||||
eexists; propositional.
|
||||
apply trc_trans with (x1 || pr2').
|
||||
match goal with
|
||||
| [ _ : lstepSilent^* pr1' ?x |- _ ] => apply trc_trans with (x || pr2')
|
||||
end.
|
||||
eauto.
|
||||
apply trc_trans with (x1 || x).
|
||||
match goal with
|
||||
| [ _ : lstepSilent^* pr2' ?x' |- lstepSilent^* (?x || _) _ ] => eapply trc_trans with (x || x')
|
||||
end.
|
||||
eauto.
|
||||
apply trc_one.
|
||||
eauto.
|
||||
|
@ -646,9 +660,13 @@ Proof.
|
|||
eapply H2 in H9; eauto.
|
||||
first_order.
|
||||
eexists; propositional.
|
||||
apply trc_trans with (x1 || pr2').
|
||||
match goal with
|
||||
| [ _ : lstepSilent^* pr1' ?x |- _ ] => apply trc_trans with (x || pr2')
|
||||
end.
|
||||
eauto.
|
||||
apply trc_trans with (x1 || x).
|
||||
match goal with
|
||||
| [ _ : lstepSilent^* pr2' ?x' |- lstepSilent^* (?x || _) _ ] => eapply trc_trans with (x || x')
|
||||
end.
|
||||
eauto.
|
||||
apply trc_one.
|
||||
eauto.
|
||||
|
@ -657,9 +675,13 @@ Proof.
|
|||
eapply H2 in H9; eauto.
|
||||
first_order.
|
||||
eexists; propositional.
|
||||
apply trc_trans with (x1 || pr2').
|
||||
match goal with
|
||||
| [ _ : lstepSilent^* pr1' ?x |- _ ] => apply trc_trans with (x || pr2')
|
||||
end.
|
||||
eauto.
|
||||
apply trc_trans with (x1 || x).
|
||||
match goal with
|
||||
| [ _ : lstepSilent^* pr2' ?x' |- lstepSilent^* (?x || _) _ ] => eapply trc_trans with (x || x')
|
||||
end.
|
||||
eauto.
|
||||
apply trc_one.
|
||||
eauto.
|
||||
|
@ -1189,8 +1211,8 @@ Proof.
|
|||
exfalso; eauto.
|
||||
invert H1; eauto.
|
||||
invert H1; eauto.
|
||||
eapply manyOf_action in H5; eauto; first_order.
|
||||
eapply manyOf_action in H4; eauto; first_order.
|
||||
eapply manyOf_action in H5; eauto; first_order; exfalso; eauto.
|
||||
eapply manyOf_action in H4; eauto; first_order; exfalso; eauto.
|
||||
Qed.
|
||||
|
||||
Lemma manyOf_rendezvous : forall ch (A : Set) (v : A) (k : A -> _) pr,
|
||||
|
|
Loading…
Reference in a new issue