Merge branch 'master' of ssh://schizomaniac.net//home/adamc/git-root/frap

This commit is contained in:
Adam Chlipala 2016-05-15 14:41:01 -04:00
commit ea371df876

View file

@ -428,16 +428,22 @@ Proof.
exists (fun p q => exists r, x p r /\ x0 r q).
first_order.
eapply H0 in H5; eauto.
match goal with
| [ H : _, H' : x _ _ |- _ ] => eapply H in H'; eauto; []
end.
first_order.
eapply refines_trans' in H7; eauto.
eapply refines_trans' with (R := x0) in H7; eauto.
first_order.
eapply H3 in H6; eauto.
match goal with
| [ H : _, H' : x _ _ |- _ ] => eapply H in H'; eauto; []
end.
first_order.
eapply refines_trans' in H7; eauto.
eapply refines_trans' with (R := x0) in H7; eauto.
first_order.
eapply H1 in H8; eauto.
match goal with
| [ H : _, H' : x0 _ _ |- _ ] => eapply H in H'; eauto; []
end.
first_order.
eauto 8 using trc_trans.
Qed.
@ -542,9 +548,13 @@ Proof.
eapply refines_Dup_Action in H5; eauto.
first_order.
eexists; propositional.
apply trc_trans with (x1 || pr2').
match goal with
| [ _ : lstepSilent^* pr1' ?x |- _ ] => apply trc_trans with (x || pr2')
end.
eauto.
apply trc_trans with (x1 || x).
match goal with
| [ _ : lstepSilent^* pr2' ?x' |- lstepSilent^* (?x || _) _ ] => eapply trc_trans with (x || x')
end.
eauto.
apply trc_one.
eauto.
@ -553,9 +563,13 @@ Proof.
eapply refines_Dup_Action in H5; eauto.
first_order.
eexists; propositional.
apply trc_trans with (x1 || pr2').
match goal with
| [ _ : lstepSilent^* pr1' ?x |- _ ] => apply trc_trans with (x || pr2')
end.
eauto.
apply trc_trans with (x1 || x).
match goal with
| [ _ : lstepSilent^* pr2' ?x' |- lstepSilent^* (?x || _) _ ] => eapply trc_trans with (x || x')
end.
eauto.
apply trc_one.
eauto.
@ -646,9 +660,13 @@ Proof.
eapply H2 in H9; eauto.
first_order.
eexists; propositional.
apply trc_trans with (x1 || pr2').
match goal with
| [ _ : lstepSilent^* pr1' ?x |- _ ] => apply trc_trans with (x || pr2')
end.
eauto.
apply trc_trans with (x1 || x).
match goal with
| [ _ : lstepSilent^* pr2' ?x' |- lstepSilent^* (?x || _) _ ] => eapply trc_trans with (x || x')
end.
eauto.
apply trc_one.
eauto.
@ -657,9 +675,13 @@ Proof.
eapply H2 in H9; eauto.
first_order.
eexists; propositional.
apply trc_trans with (x1 || pr2').
match goal with
| [ _ : lstepSilent^* pr1' ?x |- _ ] => apply trc_trans with (x || pr2')
end.
eauto.
apply trc_trans with (x1 || x).
match goal with
| [ _ : lstepSilent^* pr2' ?x' |- lstepSilent^* (?x || _) _ ] => eapply trc_trans with (x || x')
end.
eauto.
apply trc_one.
eauto.
@ -1189,8 +1211,8 @@ Proof.
exfalso; eauto.
invert H1; eauto.
invert H1; eauto.
eapply manyOf_action in H5; eauto; first_order.
eapply manyOf_action in H4; eauto; first_order.
eapply manyOf_action in H5; eauto; first_order; exfalso; eauto.
eapply manyOf_action in H4; eauto; first_order; exfalso; eauto.
Qed.
Lemma manyOf_rendezvous : forall ch (A : Set) (v : A) (k : A -> _) pr,