mirror of
https://github.com/achlipala/frap.git
synced 2025-01-05 23:54:14 +00:00
TransitionSystems: factorial example finished
This commit is contained in:
parent
9ae318190c
commit
ee02d8926a
2 changed files with 88 additions and 54 deletions
|
@ -5,6 +5,10 @@
|
|||
|
||||
Require Import Frap.
|
||||
|
||||
Set Implicit Arguments.
|
||||
(* This command will treat type arguments to functions as implicit, like in
|
||||
* Haskell or ML. *)
|
||||
|
||||
|
||||
(* Here's a classic recursive, functional program for factorial. *)
|
||||
Fixpoint fact (n : nat) : nat :=
|
||||
|
@ -59,6 +63,8 @@ Theorem trc_trans : forall {A} (R : A -> A -> Prop) x y, trc R x y
|
|||
-> trc R x z.
|
||||
Proof.
|
||||
induct 1; simplify.
|
||||
(* Note how we pass a *number* to [induct], to ask for induction on
|
||||
* *the first hypothesis in the theorem statement*. *)
|
||||
|
||||
assumption.
|
||||
(* [assumption]: prove a conclusion that matches some hypothesis exactly. *)
|
||||
|
@ -117,28 +123,57 @@ Record trsys state := {
|
|||
Initial : state -> Prop;
|
||||
Step : state -> state -> Prop
|
||||
}.
|
||||
(* Probably it's intuitively clear what a record type must be.
|
||||
* See usage examples below to fill in more of the details.
|
||||
* Note that [state] is a polymorphic type parameter. *)
|
||||
|
||||
(* The example of our factorial program: *)
|
||||
Definition factorial_sys (original_input : nat) : trsys fact_state := {|
|
||||
Initial := fact_init original_input;
|
||||
Step := fact_step
|
||||
|}.
|
||||
|
||||
(* To prove that our state machine is correct, we rely on the crucial technique
|
||||
* of *invariants*. What is an invariant? Here's a general definition, in
|
||||
* terms of an arbitrary *transition system* defined by a set of states,
|
||||
* an initial-state relation, and a step relation. *)
|
||||
Definition invariantFor {state} (sys : trsys state) (invariant : state -> Prop) :=
|
||||
forall s, sys.(Initial) s
|
||||
-> forall s', sys.(Step)^* s s'
|
||||
-> invariant s'.
|
||||
(* That is, when we begin in an initial state and take any number of steps, the
|
||||
* place we wind up always satisfies the invariant. *)
|
||||
|
||||
Theorem use_invariant : forall {state} (sys : trsys state) (invariant : state -> Prop) s s',
|
||||
sys.(Step)^* s s'
|
||||
(* Here's a simple lemma to help us apply an invariant usefully,
|
||||
* really just restating the definition. *)
|
||||
Theorem use_invariant : forall {state} (sys : trsys state)
|
||||
(invariant : state -> Prop) s s',
|
||||
invariantFor sys invariant
|
||||
-> sys.(Initial) s
|
||||
-> invariantFor sys invariant
|
||||
-> sys.(Step)^* s s'
|
||||
-> invariant s'.
|
||||
Proof.
|
||||
firstorder.
|
||||
unfold invariantFor.
|
||||
simplify.
|
||||
eapply H.
|
||||
eassumption.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Theorem invariantFor_monotone : forall {state} (sys : trsys state)
|
||||
(invariant1 invariant2 : state -> Prop),
|
||||
(forall s, invariant1 s -> invariant2 s)
|
||||
-> invariantFor sys invariant1
|
||||
-> invariantFor sys invariant2.
|
||||
(* What's the most fundamental way to establish an invariant? Induction! *)
|
||||
Lemma invariant_induction' : forall {state} (sys : trsys state)
|
||||
(invariant : state -> Prop),
|
||||
(forall s, invariant s -> forall s', sys.(Step) s s' -> invariant s')
|
||||
-> forall s s', sys.(Step)^* s s'
|
||||
-> invariant s
|
||||
-> invariant s'.
|
||||
Proof.
|
||||
unfold invariantFor; intuition eauto.
|
||||
induct 2; propositional.
|
||||
|
||||
apply IHtrc.
|
||||
eapply H.
|
||||
eassumption.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Theorem invariant_induction : forall {state} (sys : trsys state)
|
||||
|
@ -148,53 +183,15 @@ Theorem invariant_induction : forall {state} (sys : trsys state)
|
|||
-> invariantFor sys invariant.
|
||||
Proof.
|
||||
unfold invariantFor; intros.
|
||||
assert (invariant s) by eauto.
|
||||
clear H1.
|
||||
induction H2; eauto.
|
||||
Qed.
|
||||
|
||||
|
||||
(* To prove that our state machine is correct, we rely on the crucial technique
|
||||
* of *invariants*. What is an invariant? Here's a general definition, in
|
||||
* terms of an arbitrary *transition system* defined by a set of states,
|
||||
* an initial-state relation, and a step relation. *)
|
||||
Definition invariantFor {state} (initial : state -> Prop) (step : state -> state -> Prop) (invariant : state -> Prop) :=
|
||||
forall s, initial s
|
||||
-> forall s', step^* s s'
|
||||
-> invariant s'.
|
||||
(* That is, when we begin in an initial state and take any number of steps, the
|
||||
* place we wind up always satisfied the invariant. *)
|
||||
|
||||
(* Here's a simple lemma to help us apply an invariant usefully,
|
||||
* really just restating the definition. *)
|
||||
Theorem use_invariant : forall {state} (initial : state -> Prop)
|
||||
(step : state -> state -> Prop) (invariant : state -> Prop) s s',
|
||||
step^* s s'
|
||||
-> initial s
|
||||
-> invariantFor initial step invariant
|
||||
-> invariant s'.
|
||||
Proof.
|
||||
unfold invariantFor.
|
||||
simplify.
|
||||
eapply H1.
|
||||
eapply invariant_induction'.
|
||||
eassumption.
|
||||
eassumption.
|
||||
apply H.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
(* What's the most fundamental way to establish an invariant? Induction! *)
|
||||
Theorem invariant_induction : forall {state} (initial : state -> Prop)
|
||||
(step : state -> state -> Prop) (invariant : state -> Prop),
|
||||
(forall s, initial s -> invariant s)
|
||||
-> (forall s, invariant s -> forall s', step s s' -> invariant s')
|
||||
-> invariantFor initial step invariant.
|
||||
Proof.
|
||||
unfold invariantFor; intros.
|
||||
assert (invariant s) by eauto.
|
||||
clear H1.
|
||||
induction H2; eauto.
|
||||
Qed.
|
||||
|
||||
(* Here's a good invariant for factorial, parameterized on the original input
|
||||
(* That's enough abstract results for now. Let's apply them to our example.
|
||||
* Here's a good invariant for factorial, parameterized on the original input
|
||||
* to the program. *)
|
||||
Definition fact_invariant (original_input : nat) (st : fact_state) : Prop :=
|
||||
match st with
|
||||
|
@ -205,7 +202,7 @@ Definition fact_invariant (original_input : nat) (st : fact_state) : Prop :=
|
|||
(* We can use [invariant_induction] to prove that it really is a good
|
||||
* invariant. *)
|
||||
Theorem fact_invariant_ok : forall original_input,
|
||||
invariantFor (fact_init original_input) fact_step (fact_invariant original_input).
|
||||
invariantFor (factorial_sys original_input) (fact_invariant original_input).
|
||||
Proof.
|
||||
simplify.
|
||||
apply invariant_induction; simplify.
|
||||
|
@ -235,3 +232,39 @@ Proof.
|
|||
rewrite H.
|
||||
ring.
|
||||
Qed.
|
||||
|
||||
(* Therefore, every reachable state satisfies this invariant. *)
|
||||
Theorem fact_invariant_always : forall original_input s s',
|
||||
(factorial_sys original_input).(Step)^* s s'
|
||||
-> (factorial_sys original_input).(Initial) s
|
||||
-> fact_invariant original_input s'.
|
||||
Proof.
|
||||
simplify.
|
||||
eapply use_invariant.
|
||||
apply fact_invariant_ok.
|
||||
eassumption.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
(* Therefore, any final state has the right answer! *)
|
||||
Lemma fact_ok' : forall original_input s,
|
||||
fact_final s
|
||||
-> fact_invariant original_input s
|
||||
-> s = AnswerIs (fact original_input).
|
||||
Proof.
|
||||
invert 1; simplify; equality.
|
||||
Qed.
|
||||
|
||||
Theorem fact_ok : forall original_input s s',
|
||||
(factorial_sys original_input).(Step)^* s s'
|
||||
-> (factorial_sys original_input).(Initial) s
|
||||
-> fact_final s'
|
||||
-> s' = AnswerIs (fact original_input).
|
||||
Proof.
|
||||
simplify.
|
||||
apply fact_ok'.
|
||||
assumption.
|
||||
eapply fact_invariant_always.
|
||||
eassumption.
|
||||
assumption.
|
||||
Qed.
|
||||
|
|
|
@ -9,3 +9,4 @@ BasicSyntax_template.v
|
|||
BasicSyntax.v
|
||||
Interpreters_template.v
|
||||
Interpreters.v
|
||||
TransitionSystems.v
|
||||
|
|
Loading…
Reference in a new issue