mirror of
https://github.com/achlipala/frap.git
synced 2025-01-07 16:44:14 +00:00
DataAbstraction: FindDuplicates
This commit is contained in:
parent
d09f1abe92
commit
f14ed26afa
1 changed files with 162 additions and 12 deletions
|
@ -989,16 +989,18 @@ Module Type FINITE_SET.
|
|||
Parameter t : Set.
|
||||
|
||||
Parameter empty : t.
|
||||
Parameter insert : t -> key -> t.
|
||||
Parameter add : t -> key -> t.
|
||||
Parameter member : t -> key -> bool.
|
||||
|
||||
Axiom member_empty : forall k, member empty k = false.
|
||||
|
||||
Axiom member_insert_eq : forall k s,
|
||||
member (insert s k) k = true.
|
||||
Axiom member_insert_noteq : forall k1 k2 s,
|
||||
Axiom member_add_eq : forall k s,
|
||||
member (add s k) k = true.
|
||||
Axiom member_add_noteq : forall k1 k2 s,
|
||||
k1 <> k2
|
||||
-> member (insert s k1) k2 = member s k2.
|
||||
-> member (add s k1) k2 = member s k2.
|
||||
|
||||
Axiom decidable_equality : forall a b : key, a = b \/ a <> b.
|
||||
End FINITE_SET.
|
||||
|
||||
Module Type SET_WITH_EQUALITY.
|
||||
|
@ -1008,12 +1010,12 @@ Module Type SET_WITH_EQUALITY.
|
|||
Axiom equal_ok : forall a b, if equal a b then a = b else a <> b.
|
||||
End SET_WITH_EQUALITY.
|
||||
|
||||
Module ListSet(SE : SET_WITH_EQUALITY) : FINITE_SET with Definition key := SE.t.
|
||||
Module ListSet(SE : SET_WITH_EQUALITY) <: FINITE_SET with Definition key := SE.t.
|
||||
Definition key := SE.t.
|
||||
Definition t := list SE.t.
|
||||
|
||||
Definition empty : t := [].
|
||||
Definition insert (s : t) (k : key) : t := k :: s.
|
||||
Definition add (s : t) (k : key) : t := k :: s.
|
||||
Fixpoint member (s : t) (k : key) : bool :=
|
||||
match s with
|
||||
| [] => false
|
||||
|
@ -1026,8 +1028,8 @@ Module ListSet(SE : SET_WITH_EQUALITY) : FINITE_SET with Definition key := SE.t.
|
|||
equality.
|
||||
Qed.
|
||||
|
||||
Theorem member_insert_eq : forall k s,
|
||||
member (insert s k) k = true.
|
||||
Theorem member_add_eq : forall k s,
|
||||
member (add s k) k = true.
|
||||
Proof.
|
||||
simplify.
|
||||
pose proof (SE.equal_ok k k).
|
||||
|
@ -1036,9 +1038,9 @@ Module ListSet(SE : SET_WITH_EQUALITY) : FINITE_SET with Definition key := SE.t.
|
|||
equality.
|
||||
Qed.
|
||||
|
||||
Theorem member_insert_noteq : forall k1 k2 s,
|
||||
Theorem member_add_noteq : forall k1 k2 s,
|
||||
k1 <> k2
|
||||
-> member (insert s k1) k2 = member s k2.
|
||||
-> member (add s k1) k2 = member s k2.
|
||||
Proof.
|
||||
simplify.
|
||||
pose proof (SE.equal_ok k1 k2).
|
||||
|
@ -1046,9 +1048,16 @@ Module ListSet(SE : SET_WITH_EQUALITY) : FINITE_SET with Definition key := SE.t.
|
|||
equality.
|
||||
equality.
|
||||
Qed.
|
||||
|
||||
Theorem decidable_equality : forall a b : key, a = b \/ a <> b.
|
||||
Proof.
|
||||
simplify.
|
||||
pose proof (SE.equal_ok a b).
|
||||
cases (SE.equal a b); propositional.
|
||||
Qed.
|
||||
End ListSet.
|
||||
|
||||
Module NatWithEquality : SET_WITH_EQUALITY with Definition t := nat.
|
||||
Module NatWithEquality <: SET_WITH_EQUALITY with Definition t := nat.
|
||||
Definition t := nat.
|
||||
|
||||
Fixpoint equal (a b : nat) : bool :=
|
||||
|
@ -1076,3 +1085,144 @@ Module NatWithEquality : SET_WITH_EQUALITY with Definition t := nat.
|
|||
End NatWithEquality.
|
||||
|
||||
Module NatSet := ListSet(NatWithEquality).
|
||||
|
||||
Module FindDuplicates (FS : FINITE_SET).
|
||||
Fixpoint noDuplicates' (ls : list FS.key) (s : FS.t) : bool :=
|
||||
match ls with
|
||||
| [] => true
|
||||
| x :: ls' => negb (FS.member s x) && noDuplicates' ls' (FS.add s x)
|
||||
end.
|
||||
|
||||
Definition noDuplicates (ls : list FS.key) := noDuplicates' ls FS.empty.
|
||||
|
||||
Definition hasDuplicate (ls : list FS.key) :=
|
||||
exists ls1 a ls2 ls3, ls = ls1 ++ a :: ls2 ++ a :: ls3.
|
||||
|
||||
Definition contains (a : FS.key) (ls : list FS.key) :=
|
||||
exists ls1 ls2, ls = ls1 ++ a :: ls2.
|
||||
|
||||
Lemma noDuplicates'_ok : forall ls s, if noDuplicates' ls s
|
||||
then ~(hasDuplicate ls
|
||||
\/ exists a, FS.member s a = true
|
||||
/\ contains a ls)
|
||||
else (hasDuplicate ls
|
||||
\/ exists a, FS.member s a = true
|
||||
/\ contains a ls).
|
||||
Proof.
|
||||
induct ls; simplify.
|
||||
|
||||
unfold hasDuplicate, contains.
|
||||
propositional.
|
||||
first_order.
|
||||
cases x; simplify.
|
||||
equality.
|
||||
equality.
|
||||
|
||||
first_order.
|
||||
cases x0; simplify.
|
||||
equality.
|
||||
equality.
|
||||
cases (FS.member s a); simplify.
|
||||
right.
|
||||
exists a.
|
||||
propositional.
|
||||
unfold contains.
|
||||
exists [].
|
||||
exists ls.
|
||||
simplify.
|
||||
equality.
|
||||
|
||||
specialize (IHls (FS.add s a)).
|
||||
cases (noDuplicates' ls (FS.add s a)).
|
||||
propositional.
|
||||
|
||||
apply H1.
|
||||
exists a.
|
||||
propositional.
|
||||
apply FS.member_add_eq.
|
||||
unfold hasDuplicate, contains in *.
|
||||
first_order.
|
||||
cases x; simplify.
|
||||
invert H0.
|
||||
exists x1.
|
||||
exists x2.
|
||||
equality.
|
||||
|
||||
invert H0.
|
||||
exfalso.
|
||||
apply H with (x3 := x).
|
||||
exists x0.
|
||||
exists x1.
|
||||
exists x2.
|
||||
equality.
|
||||
|
||||
first_order.
|
||||
apply H1 with x.
|
||||
propositional.
|
||||
pose proof (FS.decidable_equality a x).
|
||||
propositional.
|
||||
rewrite H4.
|
||||
apply FS.member_add_eq.
|
||||
rewrite FS.member_add_noteq.
|
||||
assumption.
|
||||
assumption.
|
||||
cases x0; simplify.
|
||||
equality.
|
||||
invert H2.
|
||||
exists x0.
|
||||
exists x1.
|
||||
equality.
|
||||
|
||||
first_order.
|
||||
left.
|
||||
exists (a :: x).
|
||||
exists x0.
|
||||
exists x1.
|
||||
exists x2.
|
||||
simplify.
|
||||
equality.
|
||||
cases (FS.member s x).
|
||||
|
||||
right.
|
||||
exists x.
|
||||
propositional.
|
||||
exists (a :: x0).
|
||||
exists x1.
|
||||
simplify.
|
||||
equality.
|
||||
|
||||
left.
|
||||
pose proof (FS.decidable_equality a x).
|
||||
propositional.
|
||||
|
||||
exists nil.
|
||||
exists a.
|
||||
exists x0.
|
||||
exists x1.
|
||||
simplify.
|
||||
equality.
|
||||
rewrite FS.member_add_noteq in H.
|
||||
equality.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Theorem noDuplicates_ok : forall ls, if noDuplicates ls
|
||||
then ~hasDuplicate ls
|
||||
else hasDuplicate ls.
|
||||
Proof.
|
||||
simplify.
|
||||
pose proof (noDuplicates'_ok ls FS.empty).
|
||||
unfold noDuplicates.
|
||||
cases (noDuplicates' ls FS.empty); first_order.
|
||||
rewrite FS.member_empty in H.
|
||||
equality.
|
||||
Qed.
|
||||
End FindDuplicates.
|
||||
|
||||
Module NatDuplicateFinder := FindDuplicates(NatSet).
|
||||
|
||||
Compute NatDuplicateFinder.noDuplicates [].
|
||||
Compute NatDuplicateFinder.noDuplicates [1].
|
||||
Compute NatDuplicateFinder.noDuplicates [1; 2].
|
||||
Compute NatDuplicateFinder.noDuplicates [1; 2; 3].
|
||||
Compute NatDuplicateFinder.noDuplicates [1; 2; 1; 3].
|
||||
|
|
Loading…
Reference in a new issue