mirror of
https://github.com/achlipala/frap.git
synced 2025-01-07 16:44:14 +00:00
OperationalSemantics chapter: contextual
This commit is contained in:
parent
3c929bd574
commit
f5685818a2
2 changed files with 145 additions and 5 deletions
|
@ -1018,9 +1018,7 @@ Module Concurrent.
|
|||
interp e v = 0
|
||||
-> step0 (v, While e body) (v, Skip)
|
||||
| Step0Par1 : forall v c,
|
||||
step0 (v, Parallel Skip c) (v, c)
|
||||
| Step0Par2 : forall v c,
|
||||
step0 (v, Parallel c Skip) (v, c).
|
||||
step0 (v, Parallel Skip c) (v, c).
|
||||
|
||||
Inductive cstep : valuation * cmd -> valuation * cmd -> Prop :=
|
||||
| CStep : forall C v c v' c' c1 c2,
|
||||
|
@ -1137,8 +1135,6 @@ Module Concurrent.
|
|||
-> step (v, While e body) (v, Skip)
|
||||
| StepParSkip1 : forall v c,
|
||||
step (v, Parallel Skip c) (v, c)
|
||||
| StepParSkip2 : forall v c,
|
||||
step (v, Parallel c Skip) (v, c)
|
||||
| StepPar1 : forall v c1 c2 v' c1',
|
||||
step (v, c1) (v', c1')
|
||||
-> step (v, Parallel c1 c2) (v', Parallel c1' c2)
|
||||
|
|
144
frap_book.tex
144
frap_book.tex
|
@ -1434,6 +1434,7 @@ The intuition behind the rules may come best from working out an example.
|
|||
Here is a step-by-step (literally!) derivation that finds $v$.
|
||||
$$\begin{array}{cl}
|
||||
& (\mupd{\mempty}{\mathtt{input}}{2}, \assign{\mathtt{output}}{1}; \mathtt{factorial\_loop}) \\
|
||||
\to & (\mupd{\mupd{\mempty}{\mathtt{input}}{2}}{\mathtt{output}}{1}, \skipe; \mathtt{factorial\_loop}) \\
|
||||
\to & (\mupd{\mupd{\mempty}{\mathtt{input}}{2}}{\mathtt{output}}{1}, \mathtt{factorial\_loop}) \\
|
||||
\to & (\mupd{\mupd{\mempty}{\mathtt{input}}{2}}{\mathtt{output}}{1}, (\assign{\mathtt{output}}{\mathtt{output} \times \mathtt{input}}; \assign{\mathtt{input}}{\mathtt{input} - 1}); \mathtt{factorial\_loop}) \\
|
||||
\to & (\mupd{\mupd{\mempty}{\mathtt{input}}{2}}{\mathtt{output}}{2}, (\skipe; \assign{\mathtt{input}}{\mathtt{input} - 1}); \mathtt{factorial\_loop}) \\
|
||||
|
@ -1519,6 +1520,149 @@ For instance, consider program $P = \while{\mathtt{n}}{\assign{\mathtt{a}}{\math
|
|||
\end{proof}
|
||||
|
||||
|
||||
\section{Contextual Small-Step Semantics}
|
||||
|
||||
The reader may have noticed some tedium in certain rules of the small-step semantics, like this one.
|
||||
$$\infer{\bigstep{(v, c_1; c_2)}{v_2}}{
|
||||
\bigstep{(v, c_1)}{v_1}
|
||||
& \bigstep{(v_1, c_2)}{v_2}
|
||||
}$$
|
||||
This rule is an example of a \emph{congruence rule}\index{congruence rule}, which shows how to take a step and \emph{lift} it into a step within a larger command, whose other subcommands are unaffected.
|
||||
Complex languages can require many congruence rules, and yet we feel like we should be able to avoid repeating all this boilerplate logic somehow.
|
||||
A common way to do so is switching to \emph{contextual small-step semantics}\index{contextual small-step semantics}.
|
||||
|
||||
We illustrate with our running example language.
|
||||
The first step is to define a set of \emph{evaluation contexts}\index{evaluation contexts}, which formalize the spots within a larger command where interesting steps are enabled.
|
||||
\encoding
|
||||
$$\begin{array}{rrcl}
|
||||
\textrm{Evaluation contexts} & C &::=& \Box \mid C; c
|
||||
\end{array}$$
|
||||
|
||||
\newcommand{\plug}[2]{#1[#2]}
|
||||
We define the operator of \emph{plugging}\index{plugging evaluation contexts} an evaluation context in the natural way.
|
||||
\begin{eqnarray*}
|
||||
\plug{\Box}{c} &=& c \\
|
||||
\plug{(C; c_2)}{c} &=& \plug{C}{c}; c_2
|
||||
\end{eqnarray*}
|
||||
|
||||
For this language, the only interesting case of evaluation contexts is the one that allows us to \emph{descend into the left subcommand}, because the old congruence rule invoked the step relation recursively for that position.
|
||||
|
||||
\newcommand{\smallstepo}[2]{#1 \to_0 #2}
|
||||
|
||||
The next ingredient is a reduced set of basic step rules, where we have dropped the congruence rule.
|
||||
$$\infer{\smallstepo{(v, \assign{x}{e})}{(\mupd{v}{x}{\denote{e}v}, \skipe)}}{}
|
||||
\quad \infer{\smallstepo{(v, \skipe; c_2)}{(v, c_2)}}{}$$
|
||||
$$\infer{\smallstepo{(v, \ifte{e}{c_1}{c_2})}{(v, c_1)}}{
|
||||
\denote{e}v \neq 0
|
||||
}
|
||||
\quad \infer{\smallstepo{(v, \ifte{e}{c_1}{c_2})}{(v, c_2)}}{
|
||||
\denote{e}v = 0
|
||||
}$$
|
||||
$$\infer{\smallstepo{(v, \while{e}{c_1})}{(v, c_1; \while{e}{c_1})}}{
|
||||
\denote{e}v \neq 0
|
||||
}
|
||||
\quad \infer{\smallstepo{(v, \while{e}{c_1})}{(v, \skipe)}}{
|
||||
\denote{e}v = 0
|
||||
}$$
|
||||
|
||||
\newcommand{\smallstepc}[2]{#1 \to_\mathsf{c} #2}
|
||||
|
||||
We regain the full coverage of the original rules with a new relation $\to_\mathsf{c}$, saying that we may apply $\to_0$ at the active subcommand within a larger command.
|
||||
$$\infer{\smallstepc{(v, C[c])}{(v', C[c'])}}{
|
||||
\smallstepo{(v, c)}{(v', c')}
|
||||
}$$
|
||||
|
||||
Let's revisit last section's example, to see contextual semantics in action, especially to demonstrate how to express an arbitrary command as an evaluation context plugged with another command.
|
||||
|
||||
\newcommand{\smallstepcs}[2]{#1 \to^*_\mathsf{c} #2}
|
||||
|
||||
\begin{theorem}
|
||||
There exists valuation $v$ such that $\smallstepcs{(\mupd{\mempty}{\mathtt{input}}{2}, \mathtt{factorial})}{(v, \skipe)}$ and $\msel{v}{\mathtt{output}} = 2$.
|
||||
\end{theorem}
|
||||
|
||||
\begin{proof}
|
||||
$$\begin{array}{cl}
|
||||
& (\mupd{\mempty}{\mathtt{input}}{2}, \assign{\mathtt{output}}{1}; \mathtt{factorial\_loop}) \\
|
||||
= & (\mupd{\mempty}{\mathtt{input}}{2}, \plug{(\Box; \mathtt{factorial\_loop})}{\assign{\mathtt{output}}{1}}) \\
|
||||
\to_\mathsf{c} & (\mupd{\mupd{\mempty}{\mathtt{input}}{2}}{\mathtt{output}}{1}, \skipe; \mathtt{factorial\_loop}) \\
|
||||
= & (\mupd{\mupd{\mempty}{\mathtt{input}}{2}}{\mathtt{output}}{1}, \plug{\Box}{\skipe; \mathtt{factorial\_loop}}) \\
|
||||
\to_\mathsf{c} & (\mupd{\mupd{\mempty}{\mathtt{input}}{2}}{\mathtt{output}}{1}, \mathtt{factorial\_loop}) \\
|
||||
= & (\mupd{\mupd{\mempty}{\mathtt{input}}{2}}{\mathtt{output}}{1}, \plug{\Box}{\mathtt{factorial\_loop}}) \\
|
||||
\to_\mathsf{c} & (\mupd{\mupd{\mempty}{\mathtt{input}}{2}}{\mathtt{output}}{1}, (\assign{\mathtt{output}}{\mathtt{output} \times \mathtt{input}}; \assign{\mathtt{input}}{\mathtt{input} - 1}); \mathtt{factorial\_loop}) \\
|
||||
= & (\mupd{\mupd{\mempty}{\mathtt{input}}{2}}{\mathtt{output}}{1}, \plug{((\Box; \assign{\mathtt{input}}{\mathtt{input} - 1}); \mathtt{factorial\_loop})}{\assign{\mathtt{output}}{\mathtt{output} \times \mathtt{input}}}) \\
|
||||
\to_\mathsf{c} & (\mupd{\mupd{\mempty}{\mathtt{input}}{2}}{\mathtt{output}}{2}, (\skipe; \assign{\mathtt{input}}{\mathtt{input} - 1}); \mathtt{factorial\_loop}) \\
|
||||
= & (\mupd{\mupd{\mempty}{\mathtt{input}}{2}}{\mathtt{output}}{2}, \plug{(\Box; \mathtt{factorial\_loop})}{\skipe; \assign{\mathtt{input}}{\mathtt{input} - 1})} \\
|
||||
\to_\mathsf{c} & (\mupd{\mupd{\mempty}{\mathtt{input}}{2}}{\mathtt{output}}{2}, \assign{\mathtt{input}}{\mathtt{input} - 1}; \mathtt{factorial\_loop}) \\
|
||||
= & (\mupd{\mupd{\mempty}{\mathtt{input}}{2}}{\mathtt{output}}{2}, \plug{\Box; \mathtt{factorial\_loop}}{\assign{\mathtt{input}}{\mathtt{input} - 1}}) \\
|
||||
\to_\mathsf{c} & (\mupd{\mupd{\mempty}{\mathtt{input}}{1}}{\mathtt{output}}{2}, \skipe; \mathtt{factorial\_loop}) \\
|
||||
= & (\mupd{\mupd{\mempty}{\mathtt{input}}{1}}{\mathtt{output}}{2}, \plug{\Box}{\skipe; \mathtt{factorial\_loop}}) \\
|
||||
\to^*_\mathsf{c} & \ldots \\
|
||||
\to_\mathsf{c} & (\mupd{\mupd{\mempty}{\mathtt{input}}{0}}{\mathtt{output}}{2}, \skipe)
|
||||
\end{array}$$
|
||||
|
||||
Clearly the final valuation assigns $\mathtt{output}$ to 2.
|
||||
\end{proof}
|
||||
|
||||
\subsection{Equivalence of Small-Step, With and Without Evaluation Contexts}
|
||||
|
||||
This new semantics formulation is equivalent to the other two, as we establish now.
|
||||
|
||||
\begin{theorem}
|
||||
If $\smallstep{(v, c)}{(v', c')}$, then $\smallstepc{(v, c)}{(v', c')}$.
|
||||
\end{theorem}
|
||||
|
||||
\begin{proof}
|
||||
By induction on the derivation of $\smallstep{(v, c)}{(v', c')}$.
|
||||
\end{proof}
|
||||
|
||||
\begin{lemma}
|
||||
If $\smallstepo{(v, c)}{(v', c')}$, then $\smallstep{(v, c)}{(v', c')}$.
|
||||
\end{lemma}
|
||||
|
||||
\begin{proof}
|
||||
By cases on the derivation of $\smallstepo{(v, c)}{(v', c')}$.
|
||||
\end{proof}
|
||||
|
||||
\begin{lemma}
|
||||
If $\smallstepo{(v, c)}{(v', c')}$, then $\smallstep{(v, C[c])}{(v', C[c'])}$.
|
||||
\end{lemma}
|
||||
|
||||
\begin{proof}
|
||||
By induction on the structure of evaluation context $C$, appealing to the last lemma.
|
||||
\end{proof}
|
||||
|
||||
\begin{theorem}
|
||||
If $\smallstepc{(v, c)}{(v', c')}$, then $\smallstep{(v, c)}{(v', c')}$.
|
||||
\end{theorem}
|
||||
|
||||
\begin{proof}
|
||||
By inversion on the derivation of $\smallstepc{(v, c)}{(v', c')}$, followed by an appeal to the last lemma.
|
||||
\end{proof}
|
||||
|
||||
\subsection{Evaluation Contexts Pay Off: Adding Concurrency}
|
||||
|
||||
To showcase the convenience of contextual semantics, let's extend our example language with a simple construct for running two commands in parallel\index{parallel composition of threads}, implicitly extending the definition of plugging accordingly.
|
||||
|
||||
$$\begin{array}{rrcl}
|
||||
\textrm{Commands} & c &::=& \ldots \mid c || c
|
||||
\end{array}$$
|
||||
|
||||
To capture that idea that \emph{either} command in a parallel construct is allowed to step next, we extend evaluation contexts like so:
|
||||
\encoding
|
||||
$$\begin{array}{rrcl}
|
||||
\textrm{Evaluation contexts} & C &::=& \ldots \mid C || c \mid c || C
|
||||
\end{array}$$
|
||||
|
||||
We need one more basic step rule, to ``garbage-collect'' threads that have finished.
|
||||
$$\infer{\smallstepo{(v, \skipe || c)}{(v, c)}}{}$$
|
||||
|
||||
And that's it!
|
||||
The new system faithfully captures our usual idea of threads executing in parallel.
|
||||
All of the theorems proved previously about contextual steps continue to hold.
|
||||
In fact, in the accompanying Coq code, literally the same proof scripts establish the new versions of the theorems, with no new human proof effort.
|
||||
It's not often that concurrency comes for free in a rigorous proof!
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\appendix
|
||||
|
|
Loading…
Reference in a new issue