diff --git a/ConcurrentSeparationLogic_template.v b/ConcurrentSeparationLogic_template.v index dc6c9f3..96acab4 100644 --- a/ConcurrentSeparationLogic_template.v +++ b/ConcurrentSeparationLogic_template.v @@ -323,11 +323,13 @@ Inductive hoare_triple (linvs : list hprop) : forall {result}, hprop -> cmd resu nth_error linvs a = Some I -> hoare_triple linvs I (Unlock a) (fun _ => emp)%sep -(* When forking into two threads, divide the (local) heap among them. *) +(* When forking into two threads, divide the (local) heap among them. + * For simplicity, we never let parallel compositions terminate, + * so it is appropriate to assign a contradictory overall postcondition. *) | HtPar : forall P1 c1 Q1 P2 c2 Q2, hoare_triple linvs P1 c1 Q1 -> hoare_triple linvs P2 c2 Q2 - -> hoare_triple linvs (P1 * P2)%sep (Par c1 c2) (fun _ => Q1 tt * Q2 tt)%sep + -> hoare_triple linvs (P1 * P2)%sep (Par c1 c2) (fun _ => [| False |])%sep (* Now we repeat these two structural rules from before. *) | HtConsequence : forall {result} (c : cmd result) P Q (P' : hprop) (Q' : _ -> hprop), @@ -353,6 +355,18 @@ Proof. reflexivity. Qed. +Lemma HtStrengthenFalse : forall linvs {result} (c : cmd result) P (Q' : _ -> hprop), + hoare_triple linvs P c (fun _ => [| False |])%sep + -> hoare_triple linvs P c Q'. +Proof. + simplify. + eapply HtStrengthen; eauto. + simplify. + unfold himp; simplify. + cases H0. + tauto. +Qed. + Lemma HtWeaken : forall linvs {result} (c : cmd result) P Q (P' : hprop), hoare_triple linvs P c Q -> P' ===> P @@ -432,8 +446,8 @@ Ltac use_IH H := conseq; [ apply H | .. ]; ht. Ltac loop_inv0 Inv := (eapply HtWeaken; [ apply HtLoop with (I := Inv) | .. ]) || (eapply HtConsequence; [ apply HtLoop with (I := Inv) | .. ]). Ltac loop_inv Inv := loop_inv0 Inv; ht. -Ltac fork0 P1 P2 := apply HtWeaken with (P := (P1 * P2)%sep); [ apply HtPar | ]. -Ltac fork P1 P2 := fork0 P1 P2 || (eapply HtStrengthen; [ fork0 P1 P2 | ]). +Ltac fork0 P1 P2 := apply HtWeaken with (P := (P1 * P2)%sep); [ eapply HtPar | ]. +Ltac fork P1 P2 := fork0 P1 P2 || (eapply HtStrengthenFalse; fork0 P1 P2). Ltac use H := (eapply use_lemma; [ eapply H | cancel ]) || (eapply HtStrengthen; [ eapply use_lemma; [ eapply H | cancel ] | ]). @@ -733,8 +747,6 @@ Proof. cancel. cancel. cancel. - - cancel. Qed. @@ -1095,10 +1107,9 @@ Lemma invert_Par : forall linvs c1 c2 P Q, -> exists P1 P2 Q1 Q2, hoare_triple linvs P1 c1 Q1 /\ hoare_triple linvs P2 c2 Q2 - /\ P ===> P1 * P2 - /\ Q1 tt * Q2 tt ===> Q tt. + /\ P ===> P1 * P2. Proof. - induct 1; simp; eauto 10. + induct 1; simp; eauto 7. symmetry in x0. apply unit_not_nat in x0; simp. @@ -1106,11 +1117,10 @@ Proof. symmetry in x0. apply unit_not_nat in x0; simp. - eauto 10 using himp_trans. + eauto 8 using himp_trans. exists (x * R)%sep, x0, (fun r => x1 r * R)%sep, x2; simp; eauto. - rewrite H2; cancel. - rewrite <- H4; cancel. + rewrite H3; cancel. Qed. Transparent heq himp lift star exis ptsto. @@ -1421,12 +1431,10 @@ Proof. eapply IHstep in H2. simp. eexists; propositional. - eapply HtStrengthen. + apply HtStrengthenFalse. econstructor. eassumption. eassumption. - simp. - cases r; auto. eapply use_himp; try eassumption. cancel. eapply use_himp; try eassumption. @@ -1437,16 +1445,14 @@ Proof. eapply IHstep in H0. simp. eexists; propositional. - eapply HtStrengthen. + apply HtStrengthenFalse. econstructor. eassumption. eassumption. - simp. - cases r; auto. eapply use_himp; try eassumption. cancel. eapply use_himp; try eassumption. - rewrite H3. + rewrite H4. cancel. Qed.