mirror of
https://github.com/achlipala/frap.git
synced 2025-01-05 23:54:14 +00:00
TypesAndMutation: comments
This commit is contained in:
parent
0845fa85b4
commit
ff42602069
1 changed files with 110 additions and 8 deletions
|
@ -5,8 +5,16 @@
|
|||
|
||||
Require Import Frap.
|
||||
|
||||
(* Our approach to type soundness works beyond purely functional programs, too.
|
||||
* Let's see how it applies to a classic ML feature: mutable references.
|
||||
* We'll complete the full exercise for one semantics first, then go back and
|
||||
* extend the result to cover a semantics with another crucial real-world
|
||||
* feature. *)
|
||||
|
||||
Module References.
|
||||
Notation loc := nat.
|
||||
(* Locations are the values allowed for references. Think of them as memory
|
||||
* addresses. *)
|
||||
|
||||
Inductive exp : Set :=
|
||||
| Var (x : var)
|
||||
|
@ -16,15 +24,24 @@ Module References.
|
|||
| App (e1 e2 : exp)
|
||||
|
||||
| New (e1 : exp)
|
||||
(* Allocate a fresh reference, initialized with this value. *)
|
||||
|
||||
| Read (e1 : exp)
|
||||
(* Return the value stored at this address. *)
|
||||
|
||||
| Write (e1 e2 : exp)
|
||||
(* Overwrite the value at address [e1] with new value [e2]. *)
|
||||
|
||||
| Loc (l : loc).
|
||||
(* A twist: though source programs may not mention locations directly,
|
||||
* intermediate execution states will need to include location constants. *)
|
||||
|
||||
Inductive value : exp -> Prop :=
|
||||
| VConst : forall n, value (Const n)
|
||||
| VAbs : forall x e1, value (Abs x e1)
|
||||
|
||||
| VLoc : forall l, value (Loc l).
|
||||
(* Locations are values, too. *)
|
||||
|
||||
Fixpoint subst (e1 : exp) (x : string) (e2 : exp) : exp :=
|
||||
match e2 with
|
||||
|
@ -40,6 +57,9 @@ Module References.
|
|||
| Loc l => Loc l
|
||||
end.
|
||||
|
||||
(* We extend evaluation contexts in the natural way, though we won't dwell on
|
||||
* the details. *)
|
||||
|
||||
Inductive context : Set :=
|
||||
| Hole : context
|
||||
| Plus1 : context -> exp -> context
|
||||
|
@ -83,6 +103,7 @@ Module References.
|
|||
-> plug (Write2 v1 C) e (Write v1 e').
|
||||
|
||||
Definition heap := fmap loc exp.
|
||||
(* A heap assigns a value to each allocated location. *)
|
||||
|
||||
Inductive step0 : heap * exp -> heap * exp -> Prop :=
|
||||
| Beta : forall h x e v,
|
||||
|
@ -90,17 +111,28 @@ Module References.
|
|||
-> step0 (h, App (Abs x e) v) (h, subst v x e)
|
||||
| Add : forall h n1 n2,
|
||||
step0 (h, Plus (Const n1) (Const n2)) (h, Const (n1 + n2))
|
||||
|
||||
(* To run a [New], pick a location [l] that isn't used yet and stash the
|
||||
* requested value at that spot before returning it. *)
|
||||
| Allocate : forall h v l,
|
||||
value v
|
||||
-> h $? l = None
|
||||
-> step0 (h, New v) (h $+ (l, v), Loc l)
|
||||
|
||||
(* To run a [Read], just look up in the heap. *)
|
||||
| Lookup : forall h v l,
|
||||
h $? l = Some v
|
||||
-> step0 (h, Read (Loc l)) (h, v)
|
||||
|
||||
(* To run a [Write], just replace in the heap, *after* verifying that the
|
||||
* location is really present in the heap. If not, this is another
|
||||
* opportunity to get stuck, which we will prove never occurs! *)
|
||||
| Overwrite : forall h v l v',
|
||||
h $? l = Some v
|
||||
value v'
|
||||
-> h $? l = Some v
|
||||
-> step0 (h, Write (Loc l) v') (h $+ (l, v'), v').
|
||||
|
||||
(* The overall relation is much like before, with a heap added. *)
|
||||
Inductive step : heap * exp -> heap * exp -> Prop :=
|
||||
| StepRule : forall C e1 e2 e1' e2' h h',
|
||||
plug C e1 e1'
|
||||
|
@ -118,7 +150,10 @@ Module References.
|
|||
| Nat
|
||||
| Fun (dom ran : type)
|
||||
| Ref (t : type).
|
||||
(* Crucial type addition: reference types *)
|
||||
|
||||
(* New first parameter to typing relation: a *heap typing*, partial map from
|
||||
* locations to types *)
|
||||
Inductive hasty : fmap loc type -> fmap var type -> exp -> type -> Prop :=
|
||||
| HtVar : forall H G x t,
|
||||
G $? x = Some t
|
||||
|
@ -150,15 +185,24 @@ Module References.
|
|||
| HtLoc : forall H G l t,
|
||||
H $? l = Some t
|
||||
-> hasty H G (Loc l) (Ref t).
|
||||
(* Notice that the heap typing is only used here, for locations! *)
|
||||
|
||||
(* When are a heap and a heap typing compatible? *)
|
||||
Inductive heapty (ht : fmap loc type) (h : fmap loc exp) : Prop :=
|
||||
| Heapty : forall bound,
|
||||
(* Condition 1: when the heap typing assigns a type to a location, the
|
||||
* heap assigns a value of that type to that location. *)
|
||||
(forall l t,
|
||||
ht $? l = Some t
|
||||
-> exists e, h $? l = Some e
|
||||
/\ hasty ht $0 e t)
|
||||
|
||||
(* Condition 2: all addresses above some bound are unallocated in the
|
||||
* heap. Without this condition, we could get stuck proving that progress
|
||||
* can be made from a [New] expression, if the heap could be infinite! *)
|
||||
-> (forall l, l >= bound
|
||||
-> h $? l = None)
|
||||
|
||||
-> heapty ht h.
|
||||
|
||||
Hint Constructors value plug step0 step hasty heapty.
|
||||
|
@ -187,6 +231,7 @@ Module References.
|
|||
|
||||
Hint Extern 2 (exists _ : _ * _, _) => eexists (_ $+ (_, _), _).
|
||||
|
||||
(* Progress is quite straightforward. *)
|
||||
Lemma progress : forall ht h, heapty ht h
|
||||
-> forall e t,
|
||||
hasty ht $0 e t
|
||||
|
@ -198,6 +243,9 @@ Module References.
|
|||
apply H1 in H8; t.
|
||||
Qed.
|
||||
|
||||
(* Now, a series of lemmas essentially copied from original type-soundness
|
||||
* proof. *)
|
||||
|
||||
Lemma weakening_override : forall (G G' : fmap var type) x t,
|
||||
(forall x' t', G $? x' = Some t' -> G' $? x' = Some t')
|
||||
-> (forall x' t', G $+ (x, t) $? x' = Some t'
|
||||
|
@ -239,6 +287,7 @@ Module References.
|
|||
|
||||
Hint Resolve substitution.
|
||||
|
||||
(* A new property: expanding the heap typing preserves typing. *)
|
||||
Lemma heap_weakening : forall H G e t,
|
||||
hasty H G e t
|
||||
-> forall H', (forall x t, H $? x = Some t -> H' $? x = Some t)
|
||||
|
@ -249,6 +298,7 @@ Module References.
|
|||
|
||||
Hint Resolve heap_weakening.
|
||||
|
||||
(* A property about extending heap typings *)
|
||||
Lemma heap_override : forall H h k t t0 l,
|
||||
H $? k = Some t
|
||||
-> heapty H h
|
||||
|
@ -262,6 +312,7 @@ Module References.
|
|||
|
||||
Hint Resolve heap_override.
|
||||
|
||||
(* A higher-level property, stated via [heapty] *)
|
||||
Lemma heapty_extend : forall H h l t v,
|
||||
heapty H h
|
||||
-> hasty H $0 v t
|
||||
|
@ -282,6 +333,10 @@ Module References.
|
|||
|
||||
Hint Resolve heapty_extend.
|
||||
|
||||
(* The old cases of preservation proceed as before, and we need to fiddle with
|
||||
* the heap in the new cases. Note a crucial change to the theorem statement:
|
||||
* now we say that *for all* original heap typings, *there exists* a new heap
|
||||
* typing that has not *dropped* any locations. *)
|
||||
Lemma preservation0 : forall h1 e1 h2 e2,
|
||||
step0 (h1, e1) (h2, e2)
|
||||
-> forall H1 t, hasty H1 $0 e1 t
|
||||
|
@ -305,25 +360,26 @@ Module References.
|
|||
invert H2.
|
||||
eauto.
|
||||
|
||||
assert (H0 $? l = Some t) by assumption.
|
||||
apply H3 in H8.
|
||||
invert H8; propositional.
|
||||
rewrite H1 in H5.
|
||||
invert H5.
|
||||
assert (H1 $? l = Some t) by assumption.
|
||||
apply H2 in H9.
|
||||
invert H9; propositional.
|
||||
rewrite H5 in H6.
|
||||
invert H6.
|
||||
eexists; propositional.
|
||||
eauto.
|
||||
exists bound; propositional.
|
||||
cases (l ==n l0); simplify; eauto.
|
||||
subst.
|
||||
rewrite H in H2; invert H2.
|
||||
rewrite H0 in H; invert H.
|
||||
eauto.
|
||||
apply H4 in H2.
|
||||
apply H4 in H0.
|
||||
cases (l ==n l0); simplify; equality.
|
||||
assumption.
|
||||
Qed.
|
||||
|
||||
Hint Resolve preservation0.
|
||||
|
||||
(* This lemma gets more complicated, too, to accommodate heap typings. *)
|
||||
Lemma generalize_plug : forall H e1 C e1',
|
||||
plug C e1 e1'
|
||||
-> forall t, hasty H $0 e1' t
|
||||
|
@ -342,6 +398,7 @@ Module References.
|
|||
induct 1; t; (try applyIn; eexists; t).
|
||||
Qed.
|
||||
|
||||
(* For overall preservation, most of the action was in the last few lemmas. *)
|
||||
Lemma preservation : forall h1 e1 h2 e2,
|
||||
step (h1, e1) (h2, e2)
|
||||
-> forall H1 t, hasty H1 $0 e1 t
|
||||
|
@ -359,6 +416,7 @@ Module References.
|
|||
|
||||
Hint Resolve progress preservation.
|
||||
|
||||
(* We'll need this fact for the base case of invariant induction. *)
|
||||
Lemma heapty_empty : heapty $0 $0.
|
||||
Proof.
|
||||
exists 0; t.
|
||||
|
@ -366,6 +424,9 @@ Module References.
|
|||
|
||||
Hint Resolve heapty_empty.
|
||||
|
||||
(* Now there isn't much more to the proof of type safety. The crucial overall
|
||||
* insight is a strengthened invariant that quantifies existentially over a
|
||||
* heap typing. *)
|
||||
Theorem safety : forall e t, hasty $0 $0 e t
|
||||
-> invariantFor (trsys_of e)
|
||||
(fun he' => value (snd he')
|
||||
|
@ -391,9 +452,17 @@ Module References.
|
|||
Qed.
|
||||
End References.
|
||||
|
||||
(* That last operational semantics lets references pile up in the heap. Their
|
||||
* storage space is never reclaimed, even if the program will never use them
|
||||
* again. It turns out, however, that our type system remains safe, even when
|
||||
* we extend the operational semantics with explicit *garbage collection*! *)
|
||||
|
||||
Module GarbageCollection.
|
||||
Import References.
|
||||
(* We'll start from the definitions we just made, only adding a few new ones
|
||||
* and revising a few. *)
|
||||
|
||||
(* First key ingredient: which location constants appear in an expression? *)
|
||||
Fixpoint freeLocs (e : exp) : set loc :=
|
||||
match e with
|
||||
| Var _ => {}
|
||||
|
@ -407,6 +476,8 @@ Module GarbageCollection.
|
|||
| Loc l => {l}
|
||||
end.
|
||||
|
||||
(* When is there a path from one location to another through the heap, via
|
||||
* following free locations in the values associated to addresses? *)
|
||||
Inductive reachableLoc (h : heap) : loc -> loc -> Prop :=
|
||||
| ReachSelf : forall l, reachableLoc h l l
|
||||
| ReachLookup : forall l e l' l'',
|
||||
|
@ -415,6 +486,7 @@ Module GarbageCollection.
|
|||
-> reachableLoc h l' l''
|
||||
-> reachableLoc h l l''.
|
||||
|
||||
(* When is there a path from an expression to a location? *)
|
||||
Inductive reachableLocFromExp (h : heap) : exp -> loc -> Prop :=
|
||||
| ReachFromExp : forall l e l',
|
||||
l \in freeLocs e
|
||||
|
@ -427,16 +499,30 @@ Module GarbageCollection.
|
|||
-> plug C e2 e2'
|
||||
-> step0 (h, e1) (h', e2)
|
||||
-> step (h, e1') (h', e2')
|
||||
|
||||
(* New rule for the operational semantics! Pick heap [h'] that is the result
|
||||
* of garbage collecting [h]. *)
|
||||
| StepGc : forall h h' e lDefinitelyGone,
|
||||
|
||||
(* Fundamental condition: any *reachable* location in [h] has been preserved
|
||||
* precisely in [h']. *)
|
||||
(forall l e',
|
||||
reachableLocFromExp h e l
|
||||
-> h $? l = Some e'
|
||||
-> h' $? l = Some e')
|
||||
|
||||
(* However, [h'] has not sprouted any new locations. It only keeps some
|
||||
* subset of [h]'s locations. *)
|
||||
-> (forall l e',
|
||||
h' $? l = Some e'
|
||||
-> h $? l = Some e')
|
||||
|
||||
(* Finally, we require that [h'] has dropped at least one location from [h].
|
||||
* Why? If not, type safety follows trivially, because, from any starting
|
||||
* expression, we can run an infinite loop of no-op "garbage collection"! *)
|
||||
-> h $? lDefinitelyGone <> None
|
||||
-> h' $? lDefinitelyGone = None
|
||||
|
||||
-> step (h, e) (h', e).
|
||||
|
||||
Hint Constructors step.
|
||||
|
@ -452,6 +538,8 @@ Module GarbageCollection.
|
|||
Definition unstuck (he : heap * exp) := value (snd he)
|
||||
\/ (exists he', step he he').
|
||||
|
||||
(* Progress is easy; we essentially reuse the old proof, since the original
|
||||
* [step] case is enough to cover all expressions. *)
|
||||
Lemma progress : forall ht h, heapty ht h
|
||||
-> forall e t,
|
||||
hasty ht $0 e t
|
||||
|
@ -462,6 +550,9 @@ Module GarbageCollection.
|
|||
eapply References.progress in H0; t.
|
||||
Qed.
|
||||
|
||||
(* For preservation, we'll need a few more lemmas. First, reachability is
|
||||
* preserved by moving to a "larger" expression that contains "at least as
|
||||
* many" free locations. *)
|
||||
Lemma reachableLocFromExp_trans : forall h e1 l e2,
|
||||
reachableLocFromExp h e1 l
|
||||
-> freeLocs e1 \subseteq freeLocs e2
|
||||
|
@ -478,6 +569,8 @@ Module GarbageCollection.
|
|||
Hint Extern 1 (_ \subseteq _) => simplify; solve [ sets ].
|
||||
Hint Constructors reachableLoc reachableLocFromExp.
|
||||
|
||||
(* Typing is preserved by moving to a heap typing that only needs to preserve
|
||||
* the mappings for *reachable* locations. *)
|
||||
Lemma hasty_restrict : forall H h H' G e t,
|
||||
heapty H h
|
||||
-> hasty H G e t
|
||||
|
@ -489,6 +582,8 @@ Module GarbageCollection.
|
|||
induct 2; simplify; econstructor; eauto.
|
||||
Qed.
|
||||
|
||||
(* The sandwich properties, for adding a new reachability step through the
|
||||
* heap, between two other chains of arbitrary length *)
|
||||
Lemma reachableLoc_sandwich : forall h l l' e l'',
|
||||
reachableLoc h l l'
|
||||
-> h $? l' = Some e
|
||||
|
@ -510,6 +605,7 @@ Module GarbageCollection.
|
|||
eapply reachableLoc_sandwich; eauto.
|
||||
Qed.
|
||||
|
||||
(* Finally, we are ready for preservation. *)
|
||||
Lemma preservation : forall h1 e1 h2 e2,
|
||||
step (h1, e1) (h2, e2)
|
||||
-> forall H1 t, hasty H1 $0 e1 t
|
||||
|
@ -519,12 +615,17 @@ Module GarbageCollection.
|
|||
Proof.
|
||||
invert 1; simplify.
|
||||
|
||||
(* The case for the original [step] rule proceeds exactly the same way as
|
||||
* before. *)
|
||||
eapply generalize_plug in H; eauto.
|
||||
invert H; propositional.
|
||||
eapply preservation0 in H6; eauto.
|
||||
invert H6; propositional.
|
||||
eauto.
|
||||
|
||||
(* The key insight for the garbage-collection rule: as the new heap typing
|
||||
* after collection, choose the *restriction* of the original heap typing to
|
||||
* just the *reachable* locations. *)
|
||||
exists (restrict (reachableLocFromExp h1 e2) H1).
|
||||
propositional.
|
||||
|
||||
|
@ -564,6 +665,7 @@ Module GarbageCollection.
|
|||
|
||||
Hint Resolve progress preservation.
|
||||
|
||||
(* The safety proof itself is anticlimactic, looking the same as before. *)
|
||||
Theorem safety : forall e t, hasty $0 $0 e t
|
||||
-> invariantFor (trsys_of e)
|
||||
(fun he' => value (snd he')
|
||||
|
|
Loading…
Reference in a new issue