(** Formal Reasoning About Programs * Chapter 10: Compiler Correctness * Author: Adam Chlipala * License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *) Require Import Frap. Set Implicit Arguments. Inductive arith : Set := | Const (n : nat) | Var (x : var) | Plus (e1 e2 : arith) | Minus (e1 e2 : arith) | Times (e1 e2 : arith). Inductive cmd := | Skip | Assign (x : var) (e : arith) | Sequence (c1 c2 : cmd) | If (e : arith) (then_ else_ : cmd) | While (e : arith) (body : cmd) | Output (e : arith). (* ^-- new constructor *) Coercion Const : nat >-> arith. Coercion Var : var >-> arith. (*Declare Scope arith_scope.*) Infix "+" := Plus : arith_scope. Infix "-" := Minus : arith_scope. Infix "*" := Times : arith_scope. Delimit Scope arith_scope with arith. Notation "x <- e" := (Assign x e%arith) (at level 75). Infix ";;" := Sequence (at level 76). (* This one changed slightly, to avoid parsing clashes. *) Notation "'when' e 'then' then_ 'else' else_ 'done'" := (If e%arith then_ else_) (at level 75, e at level 0). Notation "'while' e 'loop' body 'done'" := (While e%arith body) (at level 75). Definition valuation := fmap var nat. Fixpoint interp (e : arith) (v : valuation) : nat := match e with | Const n => n | Var x => match v $? x with | None => 0 | Some n => n end | Plus e1 e2 => interp e1 v + interp e2 v | Minus e1 e2 => interp e1 v - interp e2 v | Times e1 e2 => interp e1 v * interp e2 v end. Inductive context := | Hole | CSeq (C : context) (c : cmd). Inductive plug : context -> cmd -> cmd -> Prop := | PlugHole : forall c, plug Hole c c | PlugSeq : forall c C c' c2, plug C c c' -> plug (CSeq C c2) c (Sequence c' c2). Inductive step0 : valuation * cmd -> option nat -> valuation * cmd -> Prop := | Step0Assign : forall v x e, step0 (v, Assign x e) None (v $+ (x, interp e v), Skip) | Step0Seq : forall v c2, step0 (v, Sequence Skip c2) None (v, c2) | Step0IfTrue : forall v e then_ else_, interp e v <> 0 -> step0 (v, If e then_ else_) None (v, then_) | Step0IfFalse : forall v e then_ else_, interp e v = 0 -> step0 (v, If e then_ else_) None (v, else_) | Step0WhileTrue : forall v e body, interp e v <> 0 -> step0 (v, While e body) None (v, Sequence body (While e body)) | Step0WhileFalse : forall v e body, interp e v = 0 -> step0 (v, While e body) None (v, Skip) | Step0Output : forall v e, step0 (v, Output e) (Some (interp e v)) (v, Skip). Inductive cstep : valuation * cmd -> option nat -> valuation * cmd -> Prop := | CStep : forall C v c l v' c' c1 c2, plug C c c1 -> step0 (v, c) l (v', c') -> plug C c' c2 -> cstep (v, c1) l (v', c2). Inductive generate : valuation * cmd -> list (option nat) -> Prop := | GenDone : forall vc, generate vc [] | GenSkip : forall v, generate (v, Skip) [None] | GenSilent : forall vc vc' ns, cstep vc None vc' -> generate vc' ns -> generate vc ns | GenOutput : forall vc n vc' ns, cstep vc (Some n) vc' -> generate vc' ns -> generate vc (Some n :: ns). Local Hint Constructors plug step0 cstep generate : core. Definition traceInclusion (vc1 vc2 : valuation * cmd) := forall ns, generate vc1 ns -> generate vc2 ns. Infix "<|" := traceInclusion (at level 70). Definition traceEquivalence (vc1 vc2 : valuation * cmd) := vc1 <| vc2 /\ vc2 <| vc1. Infix "=|" := traceEquivalence (at level 70). Definition daysPerWeek := 7. Definition weeksPerMonth := 4. Definition daysPerMonth := (daysPerWeek * weeksPerMonth)%arith. (* We are purposely building an expression with arithmetic that can be resolved * at compile time, to give our optimizations something to do. *) Example month_boundaries_in_days := "acc" <- 0;; while 1 loop when daysPerMonth then "acc" <- "acc" + daysPerMonth;; Output "acc" else (* Oh no! We must have calculated it wrong, since we got zero! *) (* And, yes, we know this spot can never be reached. Some of our * optimizations will prove it for us! *) Skip done done. Local Hint Extern 1 (interp _ _ = _) => simplify; equality : core. Local Hint Extern 1 (interp _ _ <> _) => simplify; equality : core. Theorem first_few_values : generate ($0, month_boundaries_in_days) [Some 28; Some 56]. Proof. unfold month_boundaries_in_days. eapply GenSilent. eapply CStep with (C := CSeq Hole _); eauto. eapply GenSilent. eapply CStep with (C := Hole); eauto. eapply GenSilent. eapply CStep with (C := Hole); eauto. eapply GenSilent. eapply CStep with (C := CSeq Hole _); eauto. eapply GenSilent. eapply CStep with (C := CSeq (CSeq Hole _) _); eauto. eapply GenSilent. eapply CStep with (C := CSeq Hole _); eauto. eapply GenOutput. eapply CStep with (C := CSeq Hole _); eauto. replace 28 with (interp "acc" ($0 $+ ("acc", interp 0 $0) $+ ("acc", interp ("acc" + daysPerMonth)%arith ($0 $+ ("acc", interp 0 $0))))); eauto. eapply GenSilent. eapply CStep with (C := Hole); eauto. eapply GenSilent. eapply CStep with (C := Hole); eauto. eapply GenSilent. eapply CStep with (C := CSeq Hole _); eauto. eapply GenSilent. eapply CStep with (C := CSeq (CSeq Hole _) _); eauto. eapply GenSilent. eapply CStep with (C := CSeq Hole _); eauto. eapply GenOutput. eapply CStep with (C := CSeq Hole _); eauto. replace 56 with (interp "acc" ($0 $+ ("acc", interp 0 $0) $+ ("acc", interp ("acc" + daysPerMonth)%arith ($0 $+ ("acc", interp 0 $0))) $+ ("acc", interp ("acc" + daysPerMonth)%arith ($0 $+ ("acc", interp 0 $0) $+ ("acc", interp ("acc" + daysPerMonth)%arith ($0 $+ ("acc", interp 0 $0))))))); eauto. constructor. Qed. Fixpoint cfoldArith (e : arith) : arith := match e with | Const _ => e | Var _ => e | Plus e1 e2 => let e1' := cfoldArith e1 in let e2' := cfoldArith e2 in match e1', e2' with | Const n1, Const n2 => Const (n1 + n2) | _, _ => Plus e1' e2' end | Minus e1 e2 => let e1' := cfoldArith e1 in let e2' := cfoldArith e2 in match e1', e2' with | Const n1, Const n2 => Const (n1 - n2) | _, _ => Minus e1' e2' end | Times e1 e2 => let e1' := cfoldArith e1 in let e2' := cfoldArith e2 in match e1', e2' with | Const n1, Const n2 => Const (n1 * n2) | _, _ => Times e1' e2' end end. Theorem cfoldArith_ok : forall v e, interp (cfoldArith e) v = interp e v. Proof. Admitted. Fixpoint cfoldExprs (c : cmd) : cmd := match c with | Skip => c | Assign x e => Assign x (cfoldArith e) | Sequence c1 c2 => Sequence (cfoldExprs c1) (cfoldExprs c2) | If e then_ else_ => If (cfoldArith e) (cfoldExprs then_) (cfoldExprs else_) | While e body => While (cfoldArith e) (cfoldExprs body) | Output e => Output (cfoldArith e) end. Compute cfoldExprs month_boundaries_in_days. Theorem skip_or_step : forall v c, c = Skip \/ exists v' l c', cstep (v, c) l (v', c'). Proof. induct c; simplify; first_order; subst; try match goal with | [ H : cstep _ _ _ |- _ ] => invert H end; try match goal with | [ |- context[cstep (?v, If ?e _ _)] ] => cases (interp e v ==n 0) | [ |- context[cstep (?v, While ?e _)] ] => cases (interp e v ==n 0) end; eauto 10. Qed. Theorem plug_function : forall C c1 c2, plug C c1 c2 -> forall c2', plug C c1 c2' -> c2 = c2'. Proof. induct 1; invert 1; eauto. apply IHplug in H5. equality. Qed. Lemma peel_cseq : forall C1 C2 c (c1 c2 : cmd), C1 = C2 /\ c1 = c2 -> CSeq C1 c = CSeq C2 c /\ c1 = c2. Proof. equality. Qed. Local Hint Resolve peel_cseq : core. Lemma plug_deterministic : forall v C c1 c2, plug C c1 c2 -> forall l vc1, step0 (v, c1) l vc1 -> forall C' c1', plug C' c1' c2 -> forall l' vc1', step0 (v, c1') l' vc1' -> C' = C /\ c1' = c1. Proof. induct 1; invert 1; invert 1; invert 1; auto; try match goal with | [ H : plug _ _ _ |- _ ] => invert1 H end; eauto. Qed. Lemma deterministic0 : forall vc l vc', step0 vc l vc' -> forall l' vc'', step0 vc l' vc'' -> l = l' /\ vc'' = vc'. Proof. invert 1; invert 1; simplify; propositional. Qed. Theorem deterministic : forall vc l vc', cstep vc l vc' -> forall l' vc'', cstep vc l' vc'' -> l = l' /\ vc' = vc''. Proof. invert 1; invert 1; simplify. eapply plug_deterministic in H0; eauto. invert H0. match goal with | [ H : step0 _ _ _, H' : step0 _ _ _ |- _ ] => eapply deterministic0 in H; [ | apply H' ] end. propositional; subst; auto. invert H0. auto. eapply plug_function in H2; eauto. equality. Qed. Section simulation. Variable R : valuation * cmd -> valuation * cmd -> Prop. Hypothesis one_step : forall vc1 vc2, R vc1 vc2 -> forall vc1' l, cstep vc1 l vc1' -> exists vc2', cstep vc2 l vc2' /\ R vc1' vc2'. Hypothesis agree_on_termination : forall v1 v2 c2, R (v1, Skip) (v2, c2) -> c2 = Skip. Lemma simulation_fwd' : forall vc1 ns, generate vc1 ns -> forall vc2, R vc1 vc2 -> generate vc2 ns. Proof. Admitted. Theorem simulation_fwd : forall vc1 vc2, R vc1 vc2 -> vc1 <| vc2. Proof. unfold traceInclusion; eauto using simulation_fwd'. Qed. Lemma simulation_bwd' : forall vc2 ns, generate vc2 ns -> forall vc1, R vc1 vc2 -> generate vc1 ns. Proof. Admitted. Theorem simulation_bwd : forall vc1 vc2, R vc1 vc2 -> vc2 <| vc1. Proof. unfold traceInclusion; eauto using simulation_bwd'. Qed. Theorem simulation : forall vc1 vc2, R vc1 vc2 -> vc1 =| vc2. Proof. simplify; split; auto using simulation_fwd, simulation_bwd. Qed. End simulation. Theorem cfoldExprs_ok : forall v c, (v, c) =| (v, cfoldExprs c). Proof. Admitted. Fixpoint cfold (c : cmd) : cmd := match c with | Skip => c | Assign x e => Assign x (cfoldArith e) | Sequence c1 c2 => Sequence (cfold c1) (cfold c2) | If e then_ else_ => let e' := cfoldArith e in match e' with | Const n => if n ==n 0 then cfold else_ else cfold then_ | _ => If e' (cfold then_) (cfold else_) end | While e body => While (cfoldArith e) (cfold body) | Output e => Output (cfoldArith e) end. Compute cfold month_boundaries_in_days. Notation silent_cstep := (fun a b => cstep a None b). Lemma silent_generate_fwd : forall ns vc vc', silent_cstep^* vc vc' -> generate vc ns -> generate vc' ns. Proof. induct 1; simplify; eauto. invert H1; auto. invert H. invert H3. invert H4. eapply deterministic in H; eauto. propositional; subst. auto. eapply deterministic in H; eauto. equality. Qed. Lemma silent_generate_bwd : forall ns vc vc', silent_cstep^* vc vc' -> generate vc' ns -> generate vc ns. Proof. induct 1; eauto. Qed. Lemma generate_Skip : forall v a ns, generate (v, Skip) (Some a :: ns) -> False. Proof. induct 1; simplify. invert H. invert H3. invert H4. invert H. invert H3. invert H4. Qed. Local Hint Resolve silent_generate_fwd silent_generate_bwd generate_Skip : core. Section simulation_skipping. Variable R : nat -> valuation * cmd -> valuation * cmd -> Prop. Hypothesis one_step : forall n vc1 vc2, R n vc1 vc2 -> forall vc1' l, cstep vc1 l vc1' -> (exists n', n = S n' /\ l = None /\ R n' vc1' vc2) \/ exists n' vc2', cstep vc2 l vc2' /\ R n' vc1' vc2'. Hypothesis agree_on_termination : forall n v1 v2 c2, R n (v1, Skip) (v2, c2) -> c2 = Skip. Lemma simulation_skipping_fwd' : forall vc1 ns, generate vc1 ns -> forall n vc2, R n vc1 vc2 -> generate vc2 ns. Proof. induct 1; simplify; eauto. cases vc2. apply agree_on_termination in H. subst. auto. eapply one_step in H; eauto. first_order. eauto. eapply one_step in H1; eauto. first_order. equality. eauto. Qed. Theorem simulation_skipping_fwd : forall n vc1 vc2, R n vc1 vc2 -> vc1 <| vc2. Proof. unfold traceInclusion; eauto using simulation_skipping_fwd'. Qed. Lemma match_step : forall n vc2 l vc2' vc1, cstep vc2 l vc2' -> R n vc1 vc2 -> exists vc1' vc1'' n', silent_cstep^* vc1 vc1' /\ cstep vc1' l vc1'' /\ R n' vc1'' vc2'. Proof. induct n; simplify. cases vc1; cases vc2. assert (c = Skip \/ exists v' l' c', cstep (v, c) l' (v', c')) by apply skip_or_step. first_order; subst. apply agree_on_termination in H0; subst. invert H. invert H2. invert H3. eapply one_step in H0; eauto. first_order; subst. equality. eapply deterministic in H; eauto. first_order; subst. eauto 6. cases vc1; cases vc2. assert (c = Skip \/ exists v' l' c', cstep (v, c) l' (v', c')) by apply skip_or_step. first_order; subst. apply agree_on_termination in H0; subst. invert H. invert H2. invert H3. eapply one_step in H0; eauto. first_order; subst. invert H0. eapply IHn in H3; eauto. first_order. eauto 8. eapply deterministic in H; eauto. first_order; subst. eauto 6. Qed. Lemma step_to_termination : forall vc v, silent_cstep^* vc (v, Skip) -> generate vc [None]. Proof. clear; induct 1; eauto. Qed. Hint Resolve step_to_termination : core. Lemma R_Skip : forall n vc1 v, R n vc1 (v, Skip) -> exists v', silent_cstep^* vc1 (v', Skip). Proof. induct n; simplify. cases vc1. assert (c = Skip \/ exists v' l c', cstep (v0, c) l (v', c')) by apply skip_or_step. first_order; subst. eauto. eapply one_step in H; eauto. first_order. equality. invert H. invert H4. invert H5. cases vc1. assert (c = Skip \/ exists v' l c', cstep (v0, c) l (v', c')) by apply skip_or_step. first_order; subst. eauto. eapply one_step in H; eauto. first_order; subst. invert H. apply IHn in H2. first_order. eauto. invert H. invert H4. invert H5. Qed. Lemma simulation_skipping_bwd' : forall ns vc2, generate vc2 ns -> forall n vc1, R n vc1 vc2 -> generate vc1 ns. Proof. induct 1; simplify; eauto. cases vc1. apply R_Skip in H; first_order. eauto. eapply match_step in H1; eauto. first_order. eauto. eapply match_step in H1; eauto. first_order. eauto. Qed. Theorem simulation_skipping_bwd : forall n vc1 vc2, R n vc1 vc2 -> vc2 <| vc1. Proof. unfold traceInclusion; eauto using simulation_skipping_bwd'. Qed. Theorem simulation_skipping : forall n vc1 vc2, R n vc1 vc2 -> vc1 =| vc2. Proof. simplify; split; eauto using simulation_skipping_fwd, simulation_skipping_bwd. Qed. End simulation_skipping. Local Hint Extern 1 (_ < _) => linear_arithmetic : core. Local Hint Extern 1 (_ >= _) => linear_arithmetic : core. Local Hint Extern 1 (_ <> _) => linear_arithmetic : core. Lemma cfold_ok : forall v c, (v, c) =| (v, cfold c). Proof. Admitted. Fixpoint tempVar (n : nat) : string := match n with | O => "_tmp" | S n' => tempVar n' ++ "'" end%string. Compute tempVar 0. Compute tempVar 1. Compute tempVar 2. Definition noUnderscoreVar (x : var) : bool := match x with | String "_" _ => false | _ => true end. Lemma append_assoc : forall a b c, (a ++ (b ++ c) = (a ++ b) ++ c)%string. Proof. induct a; simplify; equality. Qed. Lemma append_assoc_String : forall a b, (String a b = String a "" ++ b)%string. Proof. induct b; simplify; equality. Qed. Lemma noUnderscoreVar_tempVar' : forall n, exists s, tempVar n = ("_tmp" ++ s)%string. Proof. induct n; simplify; first_order. exists ""; auto. rewrite H. exists (x ++ "'")%string. repeat match goal with | [ |- context[String ?c ?x] ] => match x with | "" => fail 1 | _ => rewrite (append_assoc_String c x) end end. repeat rewrite append_assoc. reflexivity. Qed. Theorem noUnderscoreVar_tempVar : forall x, noUnderscoreVar x = true -> forall n, x <> tempVar n. Proof. unfold not; simplify. subst. pose proof (noUnderscoreVar_tempVar' n). first_order. rewrite H0 in H. simplify. equality. Qed. Lemma tempVar_inj' : forall s1 s2, (s1 ++ "'" = s2 ++ "'")%string -> s1 = s2. Proof. induct s1; simplify. cases s2; simplify; try equality. invert H. cases s2; simplify; equality. cases s2; simplify. invert H. cases s1; simplify; equality. invert H. f_equal; auto. Qed. Theorem tempVar_inj : forall n1 n2, tempVar n1 = tempVar n2 -> n1 = n2. Proof. induct n1; simplify; cases n2; simplify; try equality. repeat match goal with | [ _ : context[(?s ++ "'")%string] |- _ ] => cases s; simplify; try equality end. repeat match goal with | [ _ : context[(?s ++ "'")%string] |- _ ] => cases s; simplify; try equality end. auto using tempVar_inj'. Qed. Fixpoint noUnderscoreArith (e : arith) : bool := match e with | Const _ => true | Var x => noUnderscoreVar x | Plus e1 e2 => noUnderscoreArith e1 && noUnderscoreArith e2 | Minus e1 e2 => noUnderscoreArith e1 && noUnderscoreArith e2 | Times e1 e2 => noUnderscoreArith e1 && noUnderscoreArith e2 end. Fixpoint noUnderscore (c : cmd) : bool := match c with | Skip => true | Assign x e => noUnderscoreVar x && noUnderscoreArith e | Sequence c1 c2 => noUnderscore c1 && noUnderscore c2 | If e then_ else_ => noUnderscoreArith e && noUnderscore then_ && noUnderscore else_ | While e body => noUnderscoreArith e && noUnderscore body | Output e => noUnderscoreArith e end. Compute noUnderscore month_boundaries_in_days. Fixpoint flattenArith (tempCount : nat) (dst : var) (e : arith) : cmd := match e with | Const _ | Var _ => Assign dst e | Plus e1 e2 => let x1 := tempVar tempCount in let c1 := flattenArith (S tempCount) x1 e1 in let x2 := tempVar (S tempCount) in let c2 := flattenArith (S (S tempCount)) x2 e2 in Sequence c1 (Sequence c2 (Assign dst (Plus x1 x2))) | Minus e1 e2 => let x1 := tempVar tempCount in let c1 := flattenArith (S tempCount) x1 e1 in let x2 := tempVar (S tempCount) in let c2 := flattenArith (S (S tempCount)) x2 e2 in Sequence c1 (Sequence c2 (Assign dst (Minus x1 x2))) | Times e1 e2 => let x1 := tempVar tempCount in let c1 := flattenArith (S tempCount) x1 e1 in let x2 := tempVar (S tempCount) in let c2 := flattenArith (S (S tempCount)) x2 e2 in Sequence c1 (Sequence c2 (Assign dst (Times x1 x2))) end. Fixpoint flatten (c : cmd) : cmd := match c with | Skip => c | Assign x e => flattenArith 0 x e | Sequence c1 c2 => Sequence (flatten c1) (flatten c2) | If e then_ else_ => If e (flatten then_) (flatten else_) | While e body => While e (flatten body) | Output _ => c end. Compute flatten month_boundaries_in_days. Section simulation_multiple. Variable R : valuation * cmd -> valuation * cmd -> Prop. Hypothesis one_step : forall vc1 vc2, R vc1 vc2 -> forall vc1' l, cstep vc1 l vc1' -> exists vc2' vc2'', silent_cstep^* vc2 vc2' /\ cstep vc2' l vc2'' /\ R vc1' vc2''. Hypothesis agree_on_termination : forall v1 v2 c2, R (v1, Skip) (v2, c2) -> c2 = Skip. Lemma simulation_multiple_fwd' : forall vc1 ns, generate vc1 ns -> forall vc2, R vc1 vc2 -> generate vc2 ns. Proof. induct 1; simplify; eauto. cases vc2. apply agree_on_termination in H; subst. auto. eapply one_step in H; eauto. first_order. eauto. eapply one_step in H1; eauto. first_order. eauto. Qed. Theorem simulation_multiple_fwd : forall vc1 vc2, R vc1 vc2 -> vc1 <| vc2. Proof. unfold traceInclusion; eauto using simulation_multiple_fwd'. Qed. Inductive generateN : nat -> valuation * cmd -> list (option nat) -> Prop := | GenDoneN : forall vc, generateN 0 vc [] | GenSkupN : forall v, generateN 0 (v, Skip) [None] | GenSilentN : forall sc vc vc' ns, cstep vc None vc' -> generateN sc vc' ns -> generateN (S sc) vc ns | GenOutputN : forall sc vc n vc' ns, cstep vc (Some n) vc' -> generateN sc vc' ns -> generateN (S sc) vc (Some n :: ns). (* We won't comment on the other proof details, though they could be * interesting reading. *) Hint Constructors generateN : core. Lemma generateN_fwd : forall sc vc ns, generateN sc vc ns -> generate vc ns. Proof. induct 1; eauto. Qed. Hint Resolve generateN_fwd : core. Lemma generateN_bwd : forall vc ns, generate vc ns -> exists sc, generateN sc vc ns. Proof. induct 1; first_order; eauto. Qed. Lemma generateN_silent_cstep : forall sc vc ns, generateN sc vc ns -> forall vc', silent_cstep^* vc vc' -> exists sc', sc' <= sc /\ generateN sc' vc' ns. Proof. clear; induct 1; simplify; eauto. invert H; eauto. invert H0. invert H3. invert H4. invert H1; eauto. eapply deterministic in H; eauto. propositional; subst. apply IHgenerateN in H3. first_order. eauto. invert H1; eauto. eapply deterministic in H; eauto. equality. Qed. Lemma termination_is_last : forall sc vc ns, generateN sc vc (None :: ns) -> ns = []. Proof. induct 1; eauto. Qed. Lemma simulation_multiple_bwd' : forall sc sc', sc' < sc -> forall vc2 ns, generateN sc' vc2 ns -> forall vc1, R vc1 vc2 -> generate vc1 ns. Proof. induct sc; simplify. linear_arithmetic. cases sc'. invert H0. auto. cases vc1. assert (c = Skip \/ exists v' l c', cstep (v0, c) l (v', c')) by apply skip_or_step. first_order; subst. auto. eapply one_step in H1; eauto. first_order. invert H1. invert H2. invert H5. invert H6. invert H4. invert H7. invert H8. cases vc1; cases vc2. assert (c = Skip \/ exists v' l c', cstep (v, c) l (v', c')) by apply skip_or_step. first_order; subst. apply agree_on_termination in H1; subst. cases ns; auto. cases o. exfalso; eauto. eapply termination_is_last in H0; subst. auto. eapply one_step in H1; eauto. first_order. eapply generateN_silent_cstep in H0; eauto. first_order. invert H5; auto. invert H3. invert H7. invert H8. eapply deterministic in H3; eauto. propositional; subst. econstructor. eauto. eapply IHsc; try eassumption. linear_arithmetic. eapply deterministic in H3; eauto. propositional; subst. eapply GenOutput. eauto. eapply IHsc; try eassumption. linear_arithmetic. Qed. Theorem simulation_multiple_bwd : forall vc1 vc2, R vc1 vc2 -> vc2 <| vc1. Proof. unfold traceInclusion; simplify. apply generateN_bwd in H0. first_order. eauto using simulation_multiple_bwd'. Qed. Theorem simulation_multiple : forall vc1 vc2, R vc1 vc2 -> vc1 =| vc2. Proof. simplify; split; auto using simulation_multiple_fwd, simulation_multiple_bwd. Qed. End simulation_multiple. Definition agree (v v' : valuation) := forall x, noUnderscoreVar x = true -> v $? x = v' $? x. Ltac bool := simplify; repeat match goal with | [ H : _ && _ = true |- _ ] => apply andb_true_iff in H; propositional end. Lemma interp_agree : forall v v', agree v v' -> forall e, noUnderscoreArith e = true -> interp e v = interp e v'. Proof. induct e; bool; try equality. unfold agree in H. specialize (H _ H0). rewrite H. equality. Qed. Lemma agree_add : forall v v' x n, agree v v' -> agree (v $+ (x, n)) (v' $+ (x, n)). Proof. unfold agree; simplify. apply H in H0. cases (x ==v x0); simplify; auto. Qed. Lemma agree_add_tempVar_fwd : forall v v' n nv, agree v v' -> agree (v $+ (tempVar n, nv)) v'. Proof. unfold agree; simplify. cases (x ==v tempVar n); simplify; subst; auto. eapply noUnderscoreVar_tempVar in H0. propositional. Qed. Lemma agree_add_tempVar_bwd : forall v v' n nv, agree (v $+ (tempVar n, nv)) v' -> agree v v'. Proof. unfold agree; simplify. specialize (H _ H0). cases (x ==v tempVar n); simplify; subst; auto. eapply noUnderscoreVar_tempVar in H0. propositional. Qed. Lemma agree_add_tempVar_bwd_prime : forall v v' n nv, agree (v $+ (tempVar n ++ "'", nv)%string) v' -> agree v v'. Proof. simplify. change (tempVar n ++ "'")%string with (tempVar (S n)) in *. eauto using agree_add_tempVar_bwd. Qed. Lemma agree_refl : forall v, agree v v. Proof. first_order. Qed. Local Hint Resolve agree_add agree_add_tempVar_fwd agree_add_tempVar_bwd agree_add_tempVar_bwd_prime agree_refl : core. Lemma silent_csteps_front : forall c v1 v2 c1 c2, silent_cstep^* (v1, c1) (v2, c2) -> silent_cstep^* (v1, c1;; c) (v2, c2;; c). Proof. induct 1; eauto. invert H. eauto 6. Qed. Local Hint Resolve silent_csteps_front : core. Lemma tempVar_contra : forall n1 n2, tempVar n1 = tempVar n2 -> n1 <> n2 -> False. Proof. pose proof tempVar_inj. first_order. Qed. Local Hint Resolve tempVar_contra : core. Lemma self_prime_contra : forall s, (s ++ "'")%string = s -> False. Proof. induct s; simplify; equality. Qed. Local Hint Resolve self_prime_contra : core. Opaque tempVar. (*Lemma flatten_Assign : forall e dst tempCount, noUnderscoreArith e = true -> (forall n, n >= tempCount -> dst <> tempVar n) -> forall v1 v2, agree v1 v2 -> exists v c v2', silent_cstep^* (v2, flattenArith tempCount dst e) (v, c) /\ cstep (v, c) None (v2', Skip) /\ agree (v1 $+ (dst, interp e v1)) v2' /\ v2' $? dst = Some (interp e v1) /\ (forall n, n < tempCount -> dst <> tempVar n -> v2' $? tempVar n = v2 $? tempVar n). Proof. induct e; bool. do 3 eexists. split. auto. split. eauto. split. eauto. propositional; auto. simplify; auto. simplify. cases (dst ==v tempVar n0); simplify; subst; auto. do 3 eexists. split. auto. split. eauto. split. eauto. propositional; auto. simplify. unfold agree in H1. apply H1 in H. rewrite H. eauto. simplify. unfold agree in H1. apply H1 in H. rewrite H. split. equality. simplify. equality. eapply IHe1 with (dst := tempVar tempCount) (tempCount := S tempCount) in H1; eauto; clear IHe1. first_order. eapply IHe2 with (dst := tempVar (S tempCount)) (tempCount := S (S tempCount)) in H4; eauto; clear IHe2. first_order. eexists; exists (dst <- tempVar tempCount + tempVar (S tempCount)); eexists. split. apply trc_trans with (y := (x2, x3;; dst <- tempVar tempCount + tempVar (S tempCount))). apply trc_trans with (y := (x1, flattenArith (S (S tempCount)) (tempVar (S tempCount)) e2;; dst <- tempVar tempCount + tempVar (S tempCount))). eauto 7 using trc_trans. eauto 7 using trc_trans. eauto 7 using trc_trans. split. eauto. split. simplify. rewrite H9. rewrite H10 by eauto. rewrite H5. erewrite interp_agree with (v := v1 $+ (tempVar tempCount, interp e1 v1)) (v' := v1) by eauto. eauto. simplify. propositional. rewrite H9. rewrite H10 by eauto. rewrite H5. erewrite interp_agree with (v := v1 $+ (tempVar tempCount, interp e1 v1)) (v' := v1) by eauto. auto. simplify. rewrite H10 by eauto. eauto. (* Apologies for the copy-and-paste between the binary-operator cases! *) eapply IHe1 with (dst := tempVar tempCount) (tempCount := S tempCount) in H1; eauto; clear IHe1. first_order. eapply IHe2 with (dst := tempVar (S tempCount)) (tempCount := S (S tempCount)) in H4; eauto; clear IHe2. first_order. eexists; exists (dst <- tempVar tempCount - tempVar (S tempCount)); eexists. split. apply trc_trans with (y := (x2, x3;; dst <- tempVar tempCount - tempVar (S tempCount))). apply trc_trans with (y := (x1, flattenArith (S (S tempCount)) (tempVar (S tempCount)) e2;; dst <- tempVar tempCount - tempVar (S tempCount))). eauto 7 using trc_trans. eauto 7 using trc_trans. eauto 7 using trc_trans. split. eauto. split. simplify. rewrite H9. rewrite H10 by eauto. rewrite H5. erewrite interp_agree with (v := v1 $+ (tempVar tempCount, interp e1 v1)) (v' := v1) by eauto. eauto. simplify. propositional. rewrite H9. rewrite H10 by eauto. rewrite H5. erewrite interp_agree with (v := v1 $+ (tempVar tempCount, interp e1 v1)) (v' := v1) by eauto. auto. simplify. rewrite H10 by eauto. eauto. eapply IHe1 with (dst := tempVar tempCount) (tempCount := S tempCount) in H1; eauto; clear IHe1. first_order. eapply IHe2 with (dst := tempVar (S tempCount)) (tempCount := S (S tempCount)) in H4; eauto; clear IHe2. first_order. eexists; exists (dst <- tempVar tempCount * tempVar (S tempCount)); eexists. split. apply trc_trans with (y := (x2, x3;; dst <- tempVar tempCount * tempVar (S tempCount))). apply trc_trans with (y := (x1, flattenArith (S (S tempCount)) (tempVar (S tempCount)) e2;; dst <- tempVar tempCount * tempVar (S tempCount))). eauto 7 using trc_trans. eauto 7 using trc_trans. eauto 7 using trc_trans. split. eauto. split. simplify. rewrite H9. rewrite H10 by eauto. rewrite H5. erewrite interp_agree with (v := v1 $+ (tempVar tempCount, interp e1 v1)) (v' := v1) by eauto. eauto. simplify. propositional. rewrite H9. rewrite H10 by eauto. rewrite H5. erewrite interp_agree with (v := v1 $+ (tempVar tempCount, interp e1 v1)) (v' := v1) by eauto. auto. simplify. rewrite H10 by eauto. eauto. Qed. Lemma flatten_ok' : forall v1 c1 l v2 c2, step0 (v1, c1) l (v2, c2) -> noUnderscore c1 = true -> forall v1', agree v1 v1' -> exists v c v2', silent_cstep^* (v1', flatten c1) (v, c) /\ cstep (v, c) l (v2', flatten c2) /\ agree v2 v2'. Proof. invert 1; simplify; bool; repeat erewrite interp_agree in * by eassumption; eauto 10. assert (Hnu : noUnderscoreArith e = true) by assumption. eapply flatten_Assign with (tempCount := 0) (dst := x) in Hnu; eauto. first_order. do 3 eexists. split. eassumption. split. eassumption. erewrite <- interp_agree; eauto. simplify. eauto using noUnderscoreVar_tempVar. Qed. Lemma noUnderscore_plug : forall C c0 c1, plug C c0 c1 -> noUnderscore c1 = true -> noUnderscore c0 = true. Proof. induct 1; bool; auto. Qed. Local Hint Immediate noUnderscore_plug. Lemma silent_csteps_plug : forall C c1 c1', plug C c1 c1' -> forall v1 v2 c2 c2', plug C c2 c2' -> silent_cstep^* (v1, c1) (v2, c2) -> silent_cstep^* (v1, c1') (v2, c2'). Proof. induct 1; invert 1; eauto. Qed. Local Hint Resolve silent_csteps_plug. Fixpoint flattenContext (C : context) : context := match C with | Hole => Hole | CSeq C c => CSeq (flattenContext C) (flatten c) end. Lemma plug_flatten : forall C c1 c2, plug C c1 c2 -> plug (flattenContext C) (flatten c1) (flatten c2). Proof. induct 1; simplify; eauto. Qed. Local Hint Resolve plug_flatten. Lemma plug_total : forall c C, exists c', plug C c c'. Proof. induct C; first_order; eauto. Qed. Lemma plug_cstep : forall C c1 c1', plug C c1 c1' -> forall c2 c2', plug C c2 c2' -> forall v l v', cstep (v, c1) l (v', c2) -> cstep (v, c1') l (v', c2'). Proof. induct 1; invert 1; first_order; eauto. eapply IHplug in H0; eauto. first_order. invert H0. eauto. Qed. Local Hint Resolve plug_cstep. Lemma step0_noUnderscore : forall v c l v' c', step0 (v, c) l (v', c') -> noUnderscore c = true -> noUnderscore c' = true. Proof. invert 1; bool; auto. rewrite H0, H1. reflexivity. Qed. Local Hint Resolve step0_noUnderscore. Fixpoint noUnderscoreContext (C : context) : bool := match C with | Hole => true | CSeq C' c => noUnderscoreContext C' && noUnderscore c end. Lemma noUnderscore_plug_context : forall C c0 c1, plug C c0 c1 -> noUnderscore c1 = true -> noUnderscoreContext C = true. Proof. induct 1; bool; auto. rewrite H0, H2; reflexivity. Qed. Lemma noUnderscore_plug_fwd : forall C c0 c1, plug C c0 c1 -> noUnderscoreContext C = true -> noUnderscore c0 = true -> noUnderscore c1 = true. Proof. induct 1; bool; auto. rewrite H4, H3; reflexivity. Qed. Local Hint Resolve noUnderscore_plug_context noUnderscore_plug_fwd. Lemma flatten_ok : forall v c, noUnderscore c = true -> (v, c) =| (v, flatten c). Proof. simplify. (* Note that our simulation relation remembers lack of underscores, and it * enforces mere agreement between valuations, rather than full equality. *) apply simulation_multiple with (R := fun vc1 vc2 => noUnderscore (snd vc1) = true /\ agree (fst vc1) (fst vc2) /\ snd vc2 = flatten (snd vc1)); simplify; propositional; eauto. invert H1; simplify; subst. assert (noUnderscore c2 = true) by eauto. eapply flatten_ok' in H5; eauto. first_order. cases vc2; simplify; subst. pose proof (plug_total x0 (flattenContext C)). first_order. do 2 eexists. split. eapply silent_csteps_plug; try apply H4; eauto. eauto 6. Qed.*)