Require Import Classical Sets ClassicalEpsilon FunctionalExtensionality. Set Implicit Arguments. Module Type S. Parameter fmap : Type -> Type -> Type. Parameter empty : forall A B, fmap A B. Parameter lookup : forall A B, fmap A B -> A -> option B. Parameter add : forall A B, fmap A B -> A -> B -> fmap A B. Parameter remove : forall A B, fmap A B -> A -> fmap A B. Parameter join : forall A B, fmap A B -> fmap A B -> fmap A B. Parameter merge : forall A B, (option B -> option B -> option B) -> fmap A B -> fmap A B -> fmap A B. Parameter restrict : forall A B, (A -> Prop) -> fmap A B -> fmap A B. Parameter includes : forall A B, fmap A B -> fmap A B -> Prop. Notation "$0" := (empty _ _). Notation "m $+ ( k , v )" := (add m k v) (at level 50, left associativity). Infix "$-" := remove (at level 50, left associativity). Infix "$++" := join (at level 50, left associativity). Infix "$?" := lookup (at level 50, no associativity). Infix "$<=" := includes (at level 75). Parameter dom : forall A B, fmap A B -> set A. Axiom fmap_ext : forall A B (m1 m2 : fmap A B), (forall k, m1 $? k = m2 $? k) -> m1 = m2. Axiom lookup_empty : forall A B k, empty A B $? k = None. Axiom includes_lookup : forall A B (m m' : fmap A B) k v, m $? k = Some v -> m $<= m' -> lookup m' k = Some v. Axiom includes_add : forall A B (m m' : fmap A B) k v, m $<= m' -> add m k v $<= add m' k v. Axiom lookup_add_eq : forall A B (m : fmap A B) k1 k2 v, k1 = k2 -> add m k1 v $? k2 = Some v. Axiom lookup_add_ne : forall A B (m : fmap A B) k k' v, k' <> k -> add m k v $? k' = m $? k'. Axiom lookup_remove_eq : forall A B (m : fmap A B) k1 k2, k1 = k2 -> remove m k1 $? k2 = None. Axiom lookup_remove_ne : forall A B (m : fmap A B) k k', k' <> k -> remove m k $? k' = m $? k'. Axiom lookup_join1 : forall A B (m1 m2 : fmap A B) k, k \in dom m1 -> (m1 $++ m2) $? k = m1 $? k. Axiom lookup_join2 : forall A B (m1 m2 : fmap A B) k, ~k \in dom m1 -> (m1 $++ m2) $? k = m2 $? k. Axiom join_comm : forall A B (m1 m2 : fmap A B), dom m1 \cap dom m2 = constant nil -> m1 $++ m2 = m2 $++ m1. Axiom join_assoc : forall A B (m1 m2 m3 : fmap A B), (m1 $++ m2) $++ m3 = m1 $++ (m2 $++ m3). Axiom lookup_merge : forall A B f (m1 m2 : fmap A B) k, merge f m1 m2 $? k = f (m1 $? k) (m2 $? k). Axiom merge_empty1 : forall A B f (m : fmap A B), (forall x, f None x = x) -> merge f (@empty _ _) m = m. Axiom merge_empty2 : forall A B f (m : fmap A B), (forall x, f x None = x) -> merge f m (@empty _ _) = m. Axiom merge_empty1_alt : forall A B f (m : fmap A B), (forall x, f None x = None) -> merge f (@empty _ _) m = @empty _ _. Axiom merge_empty2_alt : forall A B f (m : fmap A B), (forall x, f x None = None) -> merge f m (@empty _ _) = @empty _ _. Axiom merge_add1 : forall A B f (m1 m2 : fmap A B) k v, (forall x y, f (Some x) y = None -> False) -> ~k \in dom m1 -> merge f (add m1 k v) m2 = match f (Some v) (lookup m2 k) with | None => merge f m1 m2 | Some v => add (merge f m1 m2) k v end. Axiom merge_add2 : forall A B f (m1 m2 : fmap A B) k v, (forall x y, f x (Some y) = None -> False) -> ~k \in dom m2 -> merge f m1 (add m2 k v) = match f (lookup m1 k) (Some v) with | None => merge f m1 m2 | Some v => add (merge f m1 m2) k v end. Axiom merge_add1_alt : forall A B f (m1 m2 : fmap A B) k v, (forall x y, f (Some x) (Some y) = None -> False) -> ~k \in dom m1 -> k \in dom m2 -> merge f (add m1 k v) m2 = match f (Some v) (lookup m2 k) with | None => merge f m1 m2 | Some v => add (merge f m1 m2) k v end. Axiom empty_includes : forall A B (m : fmap A B), empty A B $<= m. Axiom dom_empty : forall A B, dom (empty A B) = constant nil. Axiom dom_add : forall A B (m : fmap A B) (k : A) (v : B), dom (add m k v) = constant (k :: nil) \cup dom m. Axiom lookup_restrict_true : forall A B (P : A -> Prop) (m : fmap A B) k, P k -> lookup (restrict P m) k = lookup m k. Axiom lookup_restrict_false : forall A B (P : A -> Prop) (m : fmap A B) k, ~P k -> lookup (restrict P m) k = None. Axiom lookup_restrict_true_fwd : forall A B (P : A -> Prop) (m : fmap A B) k v, lookup (restrict P m) k = Some v -> P k. Global Hint Extern 1 => match goal with | [ H : lookup (empty _ _) _ = Some _ |- _ ] => rewrite lookup_empty in H; discriminate end : core. Global Hint Resolve includes_lookup includes_add empty_includes : core. Global Hint Rewrite lookup_empty lookup_add_eq lookup_add_ne lookup_remove_eq lookup_remove_ne lookup_merge lookup_restrict_true lookup_restrict_false using congruence. Global Hint Rewrite dom_empty dom_add. Ltac maps_equal := apply fmap_ext; intros; repeat (subst; autorewrite with core; try reflexivity; match goal with | [ |- context[lookup (add _ ?k _) ?k' ] ] => destruct (classic (k = k')); subst end). Global Hint Extern 3 (_ = _) => maps_equal : core. Axiom lookup_split : forall A B (m : fmap A B) k v k' v', (m $+ (k, v)) $? k' = Some v' -> (k' <> k /\ m $? k' = Some v') \/ (k' = k /\ v' = v). Global Hint Rewrite merge_empty1 merge_empty2 using solve [ eauto 1 ]. Global Hint Rewrite merge_empty1_alt merge_empty2_alt using congruence. Global Hint Rewrite merge_add1 using solve [ eauto | unfold Sets.In; autorewrite with core in *; simpl in *; try (normalize_set; simpl); intuition congruence ]. Global Hint Rewrite merge_add1_alt using solve [ congruence | unfold Sets.In; autorewrite with core in *; simpl in *; try (normalize_set; simpl); intuition congruence ]. Axiom includes_intro : forall K V (m1 m2 : fmap K V), (forall k v, m1 $? k = Some v -> m2 $? k = Some v) -> m1 $<= m2. Axiom lookup_Some_dom : forall K V (m : fmap K V) k v, m $? k = Some v -> k \in dom m. Axiom lookup_None_dom : forall K V (m : fmap K V) k, m $? k = None -> ~ k \in dom m. (* Bits meant for separation logic *) Section splitting. Variables K V : Type. Definition disjoint (h1 h2 : fmap K V) : Prop := forall a, h1 $? a <> None -> h2 $? a <> None -> False. Definition split (h h1 h2 : fmap K V) : Prop := h = h1 $++ h2. Axiom split_empty_fwd : forall h h1, split h h1 $0 -> h = h1. Axiom split_empty_fwd' : forall h h1, split h $0 h1 -> h = h1. Axiom split_empty_bwd : forall h, split h h $0. Axiom split_empty_bwd' : forall h, split h $0 h. Axiom disjoint_hemp : forall h, disjoint h $0. Axiom disjoint_hemp' : forall h, disjoint $0 h. Axiom disjoint_comm : forall h1 h2, disjoint h1 h2 -> disjoint h2 h1. Axiom split_comm : forall h h1 h2, disjoint h1 h2 -> split h h1 h2 -> split h h2 h1. Axiom split_assoc1 : forall h h1 h' h2 h3, split h h1 h' -> split h' h2 h3 -> split h (join h1 h2) h3. Axiom split_assoc2' : forall h h1 h' h2 h3, split h h1 h' -> split h' h2 h3 -> disjoint h1 h' -> disjoint h2 h3 -> split h h2 (join h3 h1). Axiom split_assoc2 : forall h h1 h' h2 h3, split h h' h1 -> split h' h2 h3 -> disjoint h' h1 -> disjoint h2 h3 -> split h h2 (join h3 h1). Axiom disjoint_assoc1 : forall h h1 h' h2 h3, split h h1 h' -> split h' h2 h3 -> disjoint h1 h' -> disjoint h2 h3 -> disjoint (join h1 h2) h3. Axiom disjoint_assoc2 : forall h h1 h' h2 h3, split h h' h1 -> split h' h2 h3 -> disjoint h' h1 -> disjoint h2 h3 -> disjoint h2 (join h3 h1). Axiom split_join : forall h1 h2, split (join h1 h2) h1 h2. Axiom split_disjoint : forall h h1 h2 h' h3, split h h1 h' -> split h' h2 h3 -> disjoint h1 h' -> disjoint h2 h3 -> disjoint h1 h2. Axiom disjoint_assoc3 : forall h h1 h2 h3, disjoint h h2 -> split h h1 h3 -> disjoint h1 h3 -> disjoint h3 h2. End splitting. Global Hint Immediate disjoint_comm split_comm : core. Global Hint Immediate split_empty_bwd disjoint_hemp disjoint_hemp' split_assoc1 split_assoc2 : core. Global Hint Immediate disjoint_assoc1 disjoint_assoc2 split_join split_disjoint disjoint_assoc3 : core. End S. Module M : S. Definition fmap (A B : Type) := A -> option B. Definition empty A B : fmap A B := fun _ => None. Section decide. Variable P : Prop. Lemma decided : inhabited (sum P (~P)). Proof. destruct (classic P). constructor; exact (inl _ H). constructor; exact (inr _ H). Qed. Definition decide : sum P (~P) := epsilon decided (fun _ => True). End decide. Definition add A B (m : fmap A B) (k : A) (v : B) : fmap A B := fun k' => if decide (k' = k) then Some v else m k'. Definition remove A B (m : fmap A B) (k : A) : fmap A B := fun k' => if decide (k' = k) then None else m k'. Definition join A B (m1 m2 : fmap A B) : fmap A B := fun k => match m1 k with | None => m2 k | x => x end. Definition merge A B f (m1 m2 : fmap A B) : fmap A B := fun k => f (m1 k) (m2 k). Definition lookup A B (m : fmap A B) (k : A) := m k. Definition restrict A B (P : A -> Prop) (m : fmap A B) : fmap A B := fun k => if decide (P k) then m k else None. Definition includes A B (m1 m2 : fmap A B) := forall k v, m1 k = Some v -> m2 k = Some v. Definition dom A B (m : fmap A B) : set A := fun x => m x <> None. Theorem fmap_ext : forall A B (m1 m2 : fmap A B), (forall k, lookup m1 k = lookup m2 k) -> m1 = m2. Proof. intros; extensionality k; auto. Qed. Theorem lookup_empty : forall A B (k : A), lookup (empty B) k = None. Proof. auto. Qed. Theorem includes_lookup : forall A B (m m' : fmap A B) k v, lookup m k = Some v -> includes m m' -> lookup m' k = Some v. Proof. auto. Qed. Theorem includes_add : forall A B (m m' : fmap A B) k v, includes m m' -> includes (add m k v) (add m' k v). Proof. unfold includes, add; intuition. destruct (decide (k0 = k)); auto. Qed. Theorem lookup_add_eq : forall A B (m : fmap A B) k1 k2 v, k1 = k2 -> lookup (add m k1 v) k2 = Some v. Proof. unfold lookup, add; intuition. destruct (decide (k2 = k1)); try tauto. congruence. Qed. Theorem lookup_add_ne : forall A B (m : fmap A B) k k' v, k' <> k -> lookup (add m k v) k' = lookup m k'. Proof. unfold lookup, add; intuition. destruct (decide (k' = k)); intuition. Qed. Theorem lookup_remove_eq : forall A B (m : fmap A B) k1 k2, k1 = k2 -> lookup (remove m k1) k2 = None. Proof. unfold lookup, remove; intuition. destruct (decide (k2 = k1)); try tauto. congruence. Qed. Theorem lookup_remove_ne : forall A B (m : fmap A B) k k', k' <> k -> lookup (remove m k) k' = lookup m k'. Proof. unfold lookup, remove; intuition. destruct (decide (k' = k)); try tauto. Qed. Theorem lookup_join1 : forall A B (m1 m2 : fmap A B) k, k \in dom m1 -> lookup (join m1 m2) k = lookup m1 k. Proof. unfold lookup, join, dom, In; intros. destruct (m1 k); congruence. Qed. Theorem lookup_join2 : forall A B (m1 m2 : fmap A B) k, ~k \in dom m1 -> lookup (join m1 m2) k = lookup m2 k. Proof. unfold lookup, join, dom, In; intros. destruct (m1 k); try congruence. exfalso; apply H; congruence. Qed. Theorem join_comm : forall A B (m1 m2 : fmap A B), dom m1 \cap dom m2 = constant nil -> join m1 m2 = join m2 m1. Proof. intros; apply fmap_ext; unfold join, lookup; intros. apply (f_equal (fun f => f k)) in H. unfold dom, intersection, constant in H; simpl in H. destruct (m1 k), (m2 k); auto. exfalso; rewrite <- H. intuition congruence. Qed. Theorem join_assoc : forall A B (m1 m2 m3 : fmap A B), join (join m1 m2) m3 = join m1 (join m2 m3). Proof. intros; apply fmap_ext; unfold join, lookup; intros. destruct (m1 k); auto. Qed. Theorem lookup_merge : forall A B f (m1 m2 : fmap A B) k, lookup (merge f m1 m2) k = f (m1 k) (m2 k). Proof. auto. Qed. Theorem merge_empty1 : forall A B f (m : fmap A B), (forall x, f None x = x) -> merge f (@empty _ _) m = m. Proof. intros; apply fmap_ext; unfold lookup, merge; auto. Qed. Theorem merge_empty2 : forall A B f (m : fmap A B), (forall x, f x None = x) -> merge f m (@empty _ _) = m. Proof. intros; apply fmap_ext; unfold lookup, merge; auto. Qed. Theorem merge_empty1_alt : forall A B f (m : fmap A B), (forall x, f None x = None) -> merge f (@empty _ _) m = @empty _ _. Proof. intros; apply fmap_ext; unfold lookup, merge; auto. Qed. Theorem merge_empty2_alt : forall A B f (m : fmap A B), (forall x, f x None = None) -> merge f m (@empty _ _) = @empty _ _. Proof. intros; apply fmap_ext; unfold lookup, merge; auto. Qed. Theorem merge_add1 : forall A B f (m1 m2 : fmap A B) k v, (forall x y, f (Some x) y = None -> False) -> ~k \in dom m1 -> merge f (add m1 k v) m2 = match f (Some v) (lookup m2 k) with | None => merge f m1 m2 | Some v => add (merge f m1 m2) k v end. Proof. intros; apply fmap_ext; unfold lookup, merge, add; intros. destruct (decide (k0 = k)); auto; subst. case_eq (f (Some v) (m2 k)); intros. case_eq (decide (k = k)); congruence. exfalso; eauto. case_eq (f (Some v) (m2 k)); intros. destruct (decide (k0 = k)); congruence. auto. Qed. Theorem merge_add2 : forall A B f (m1 m2 : fmap A B) k v, (forall x y, f x (Some y) = None -> False) -> ~k \in dom m2 -> merge f m1 (add m2 k v) = match f (lookup m1 k) (Some v) with | None => merge f m1 m2 | Some v => add (merge f m1 m2) k v end. Proof. intros; apply fmap_ext; unfold lookup, merge, add; intros. destruct (decide (k0 = k)); auto; subst. case_eq (f (m1 k) (Some v)); intros. case_eq (decide (k = k)); congruence. exfalso; eauto. case_eq (f (m1 k) (Some v)); intros. destruct (decide (k0 = k)); congruence. auto. Qed. Theorem merge_add1_alt : forall A B f (m1 m2 : fmap A B) k v, (forall x y, f (Some x) (Some y) = None -> False) -> ~k \in dom m1 -> k \in dom m2 -> merge f (add m1 k v) m2 = match f (Some v) (lookup m2 k) with | None => merge f m1 m2 | Some v => add (merge f m1 m2) k v end. Proof. intros; apply fmap_ext; unfold lookup, merge, add; intros. destruct (decide (k0 = k)); auto; subst. case_eq (f (Some v) (m2 k)); intros. case_eq (decide (k = k)); congruence. case_eq (m2 k); intros. rewrite H3 in H2. exfalso; eauto. congruence. case_eq (f (Some v) (m2 k)); intros. destruct (decide (k0 = k)); congruence. auto. Qed. Theorem empty_includes : forall A B (m : fmap A B), includes (empty (A := A) B) m. Proof. unfold includes, empty; intuition congruence. Qed. Theorem dom_empty : forall A B, dom (empty (A := A) B) = constant nil. Proof. unfold dom, empty; intros; sets idtac. Qed. Theorem dom_add : forall A B (m : fmap A B) (k : A) (v : B), dom (add m k v) = constant (k :: nil) \cup dom m. Proof. unfold dom, add; simpl; intros. sets ltac:(simpl in *; try match goal with | [ _ : context[if ?E then _ else _] |- _ ] => destruct E end; intuition congruence). Qed. Lemma lookup_split : forall A B (m : fmap A B) k v k' v', lookup (add m k v) k' = Some v' -> (k' <> k /\ lookup m k' = Some v') \/ (k' = k /\ v' = v). Proof. unfold lookup, add; simpl; intros. destruct (decide (k' = k)); intuition congruence. Qed. Theorem lookup_restrict_true : forall A B (P : A -> Prop) (m : fmap A B) k, P k -> lookup (restrict P m) k = lookup m k. Proof. unfold lookup, restrict; intros. destruct (decide (P k)); tauto. Qed. Theorem lookup_restrict_false : forall A B (P : A -> Prop) (m : fmap A B) k, ~P k -> lookup (restrict P m) k = None. Proof. unfold lookup, restrict; intros. destruct (decide (P k)); tauto. Qed. Theorem lookup_restrict_true_fwd : forall A B (P : A -> Prop) (m : fmap A B) k v, lookup (restrict P m) k = Some v -> P k. Proof. unfold lookup, restrict; intros. destruct (decide (P k)); intuition congruence. Qed. Lemma includes_intro : forall K V (m1 m2 : fmap K V), (forall k v, lookup m1 k = Some v -> lookup m2 k = Some v) -> includes m1 m2. Proof. auto. Qed. Lemma lookup_Some_dom : forall K V (m : fmap K V) k v, lookup m k = Some v -> k \in dom m. Proof. unfold lookup, dom, In; congruence. Qed. Lemma lookup_None_dom : forall K V (m : fmap K V) k, lookup m k = None -> ~ k \in dom m. Proof. unfold lookup, dom, In; congruence. Qed. Section splitting. Variables K V : Type. Notation "$0" := (@empty K V). Notation "m $+ ( k , v )" := (add m k v) (at level 50, left associativity). Infix "$-" := remove (at level 50, left associativity). Infix "$++" := join (at level 50, left associativity). Infix "$?" := lookup (at level 50, no associativity). Infix "$<=" := includes (at level 90). Definition disjoint (h1 h2 : fmap K V) : Prop := forall a, h1 $? a <> None -> h2 $? a <> None -> False. Definition split (h h1 h2 : fmap K V) : Prop := h = h1 $++ h2. Hint Extern 2 (_ <> _) => congruence : core. Ltac splt := unfold disjoint, split, join, lookup in *; intros; subst; try match goal with | [ |- @eq (fmap K V) _ _ ] => let a := fresh "a" in extensionality a; simpl end; repeat match goal with | [ a : K, H : forall a : K, _ |- _ ] => specialize (H a) end; repeat match goal with | [ H : _ |- _ ] => rewrite H | [ |- context[match ?E with Some _ => _ | None => _ end] ] => destruct E | [ _ : context[match ?E with Some _ => _ | None => _ end] |- _ ] => destruct E end; eauto; try solve [ exfalso; eauto ]. Lemma split_empty_fwd : forall h h1, split h h1 $0 -> h = h1. Proof. splt. Qed. Lemma split_empty_fwd' : forall h h1, split h $0 h1 -> h = h1. Proof. splt. Qed. Lemma split_empty_bwd : forall h, split h h $0. Proof. splt. Qed. Lemma split_empty_bwd' : forall h, split h $0 h. Proof. splt. Qed. Lemma disjoint_hemp : forall h, disjoint h $0. Proof. splt. Qed. Lemma disjoint_hemp' : forall h, disjoint $0 h. Proof. splt. Qed. Lemma disjoint_comm : forall h1 h2, disjoint h1 h2 -> disjoint h2 h1. Proof. splt. Qed. Lemma split_comm : forall h h1 h2, disjoint h1 h2 -> split h h1 h2 -> split h h2 h1. Proof. splt. Qed. Hint Immediate disjoint_comm split_comm : core. Lemma split_assoc1 : forall h h1 h' h2 h3, split h h1 h' -> split h' h2 h3 -> split h (join h1 h2) h3. Proof. splt. Qed. Lemma split_assoc2' : forall h h1 h' h2 h3, split h h1 h' -> split h' h2 h3 -> disjoint h1 h' -> disjoint h2 h3 -> split h h2 (join h3 h1). Proof. splt. Qed. Lemma split_assoc2 : forall h h1 h' h2 h3, split h h' h1 -> split h' h2 h3 -> disjoint h' h1 -> disjoint h2 h3 -> split h h2 (join h3 h1). Proof. intros; eapply split_assoc2'; eauto. Qed. Lemma disjoint_assoc1 : forall h h1 h' h2 h3, split h h1 h' -> split h' h2 h3 -> disjoint h1 h' -> disjoint h2 h3 -> disjoint (join h1 h2) h3. Proof. splt. Qed. Lemma disjoint_assoc2 : forall h h1 h' h2 h3, split h h' h1 -> split h' h2 h3 -> disjoint h' h1 -> disjoint h2 h3 -> disjoint h2 (join h3 h1). Proof. splt. Qed. Lemma split_join : forall h1 h2, split (join h1 h2) h1 h2. Proof. splt. Qed. Lemma split_disjoint : forall h h1 h2 h' h3, split h h1 h' -> split h' h2 h3 -> disjoint h1 h' -> disjoint h2 h3 -> disjoint h1 h2. Proof. splt. Qed. Lemma disjoint_assoc3 : forall h h1 h2 h3, disjoint h h2 -> split h h1 h3 -> disjoint h1 h3 -> disjoint h3 h2. Proof. splt. Qed. End splitting. End M. Export M.