(** Formal Reasoning About Programs * Chapter 16: Separation Logic * Author: Adam Chlipala * License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *) Require Import Frap Setoid Classes.Morphisms SepCancel. Set Implicit Arguments. Set Asymmetric Patterns. (** * Shared notations and definitions; main material starts afterward. *) Definition heap := fmap nat nat. Local Hint Extern 1 (_ <= _) => linear_arithmetic : core. Local Hint Extern 1 (@eq nat _ _) => linear_arithmetic : core. Ltac simp := repeat (simplify; subst; propositional; try match goal with | [ H : ex _ |- _ ] => invert H end); try linear_arithmetic. (** * Encore of last mixed-embedding language from last time *) (* Let's work with a variant of the imperative language from last time. *) Inductive loop_outcome acc := | Done (a : acc) | Again (a : acc). Inductive cmd : Set -> Type := | Return {result : Set} (r : result) : cmd result | Bind {result result'} (c1 : cmd result') (c2 : result' -> cmd result) : cmd result | Read (a : nat) : cmd nat | Write (a v : nat) : cmd unit | Loop {acc : Set} (init : acc) (body : acc -> cmd (loop_outcome acc)) : cmd acc | Fail {result} : cmd result (* But let's also add memory allocation and deallocation. *) | Alloc (numWords : nat) : cmd nat | Free (base numWords : nat) : cmd unit. Notation "x <- c1 ; c2" := (Bind c1 (fun x => c2)) (right associativity, at level 80). Notation "'for' x := i 'loop' c1 'done'" := (Loop i (fun x => c1)) (right associativity, at level 80). (* These helper functions respectively initialize a new span of memory and * remove a span of memory that the program is done with. *) Fixpoint initialize (h : heap) (base numWords : nat) : heap := match numWords with | O => h | S numWords' => initialize h base numWords' $+ (base + numWords', 0) end. Fixpoint deallocate (h : heap) (base numWords : nat) : heap := match numWords with | O => h | S numWords' => deallocate (h $- base) (base+1) numWords' end. (* Let's do the semantics a bit differently this time, falling back on classic * small-step operational semantics. *) Inductive step : forall A, heap * cmd A -> heap * cmd A -> Prop := | StepBindRecur : forall result result' (c1 c1' : cmd result') (c2 : result' -> cmd result) h h', step (h, c1) (h', c1') -> step (h, Bind c1 c2) (h', Bind c1' c2) | StepBindProceed : forall (result result' : Set) (v : result') (c2 : result' -> cmd result) h, step (h, Bind (Return v) c2) (h, c2 v) | StepLoop : forall (acc : Set) (init : acc) (body : acc -> cmd (loop_outcome acc)) h, step (h, Loop init body) (h, o <- body init; match o with | Done a => Return a | Again a => Loop a body end) | StepRead : forall h a v, h $? a = Some v -> step (h, Read a) (h, Return v) | StepWrite : forall h a v v', h $? a = Some v -> step (h, Write a v') (h $+ (a, v'), Return tt) | StepAlloc : forall h numWords a, (forall i, i < numWords -> h $? (a + i) = None) -> step (h, Alloc numWords) (initialize h a numWords, Return a) | StepFree : forall h a numWords, step (h, Free a numWords) (deallocate h a numWords, Return tt). Definition trsys_of (h : heap) {result} (c : cmd result) := {| Initial := {(h, c)}; Step := step (A := result) |}. (* Now let's get into the first distinctive feature of separation logic: an * assertion language that takes advantage of *partiality* of heaps. We give our * definitions inside a module, which will shortly be used as a parameter to * another module (from the book library), to get some free automation for * implications between these assertions. *) Module Import S <: SEP. Definition hprop := heap -> Prop. (* A [hprop] is a regular old assertion over heaps. *) (* Implication *) Definition himp (p q : hprop) := forall h, p h -> q h. (* Equivalence *) Definition heq (p q : hprop) := forall h, p h <-> q h. (* Lifting a pure proposition: it must hold, and the heap must be empty. *) Definition lift (P : Prop) : hprop := fun h => P /\ h = $0. (* Separating conjunction, one of the two big ideas of separation logic. * When does [star p q] apply to [h]? When [h] can be partitioned into two * subheaps [h1] and [h2], respectively compatible with [p] and [q]. See book * module [Map] for definitions of [split] and [disjoint]. *) Definition star (p q : hprop) : hprop := fun h => exists h1 h2, split h h1 h2 /\ disjoint h1 h2 /\ p h1 /\ q h2. (* Existential quantification *) Definition exis A (p : A -> hprop) : hprop := fun h => exists x, p x h. (* Convenient notations *) Notation "[| P |]" := (lift P) : sep_scope. Infix "*" := star : sep_scope. Notation "'exists' x .. y , p" := (exis (fun x => .. (exis (fun y => p)) ..)) : sep_scope. Delimit Scope sep_scope with sep. Notation "p === q" := (heq p%sep q%sep) (no associativity, at level 70). Notation "p ===> q" := (himp p%sep q%sep) (no associativity, at level 70). Local Open Scope sep_scope. (* And now we prove some key algebraic properties, whose details aren't so * important. The library automation uses these properties. *) Lemma iff_two : forall A (P Q : A -> Prop), (forall x, P x <-> Q x) -> (forall x, P x -> Q x) /\ (forall x, Q x -> P x). Proof. firstorder. Qed. Local Ltac t := (unfold himp, heq, lift, star, exis; propositional; subst); repeat (match goal with | [ H : forall x, _ <-> _ |- _ ] => apply iff_two in H | [ H : ex _ |- _ ] => destruct H | [ H : split _ _ $0 |- _ ] => apply split_empty_fwd in H end; propositional; subst); eauto 15. Theorem himp_heq : forall p q, p === q <-> (p ===> q /\ q ===> p). Proof. t. Qed. Theorem himp_refl : forall p, p ===> p. Proof. t. Qed. Theorem himp_trans : forall p q r, p ===> q -> q ===> r -> p ===> r. Proof. t. Qed. Theorem lift_left : forall p (Q : Prop) r, (Q -> p ===> r) -> p * [| Q |] ===> r. Proof. t. Qed. Theorem lift_right : forall p q (R : Prop), p ===> q -> R -> p ===> q * [| R |]. Proof. t. Qed. Local Hint Resolve split_empty_bwd' : core. Theorem extra_lift : forall (P : Prop) p, P -> p === [| P |] * p. Proof. t. apply split_empty_fwd' in H1; subst; auto. Qed. Theorem star_comm : forall p q, p * q === q * p. Proof. t. Qed. Theorem star_assoc : forall p q r, p * (q * r) === (p * q) * r. Proof. t. Qed. Theorem star_cancel : forall p1 p2 q1 q2, p1 ===> p2 -> q1 ===> q2 -> p1 * q1 ===> p2 * q2. Proof. t. Qed. Theorem exis_gulp : forall A p (q : A -> _), p * exis q === exis (fun x => p * q x). Proof. t. Qed. Theorem exis_left : forall A (p : A -> _) q, (forall x, p x ===> q) -> exis p ===> q. Proof. t. Qed. Theorem exis_right : forall A p (q : A -> _) x, p ===> q x -> p ===> exis q. Proof. t. Qed. End S. Export S. (* Instantiate our big automation engine to these definitions. *) Module Import Se := SepCancel.Make(S). (* ** Some extra predicates outside the set that the engine knows about *) (* Capturing single-mapping heaps *) Definition heap1 (a v : nat) : heap := $0 $+ (a, v). Definition ptsto (a v : nat) : hprop := fun h => h = heap1 a v. (* Helpful notations, some the same as above *) Notation "[| P |]" := (lift P) : sep_scope. Notation emp := (lift True). Infix "*" := star : sep_scope. Notation "'exists' x .. y , p" := (exis (fun x => .. (exis (fun y => p)) ..)) : sep_scope. Delimit Scope sep_scope with sep. Notation "p === q" := (heq p%sep q%sep) (no associativity, at level 70). Notation "p ===> q" := (himp p%sep q%sep) (no associativity, at level 70). Infix "|->" := ptsto (at level 30) : sep_scope. (* For describing a "struct" in memory at consecutive addresses *) Fixpoint multi_ptsto (a : nat) (vs : list nat) : hprop := match vs with | nil => emp | v :: vs' => a |-> v * multi_ptsto (a + 1) vs' end%sep. Infix "|-->" := multi_ptsto (at level 30) : sep_scope. (* We'll use this one to describe the struct returned by [Alloc]. *) Fixpoint zeroes (n : nat) : list nat := match n with | O => nil | S n' => zeroes n' ++ 0 :: nil end. (* For recording merely that a range of cells is mapped into our memory space *) Fixpoint allocated (a n : nat) : hprop := match n with | O => emp | S n' => (exists v, a |-> v) * allocated (a+1) n' end%sep. Infix "|->?" := allocated (at level 30) : sep_scope. (** * Finally, the Hoare logic *) Inductive hoare_triple : forall {result}, hprop -> cmd result -> (result -> hprop) -> Prop := (* First, four basic rules that look exactly the same as before *) | HtReturn : forall P {result : Set} (v : result), hoare_triple P (Return v) (fun r => P * [| r = v |])%sep | HtBind : forall P {result' result} (c1 : cmd result') (c2 : result' -> cmd result) Q R, hoare_triple P c1 Q -> (forall r, hoare_triple (Q r) (c2 r) R) -> hoare_triple P (Bind c1 c2) R | HtLoop : forall {acc : Set} (init : acc) (body : acc -> cmd (loop_outcome acc)) I, (forall acc, hoare_triple (I (Again acc)) (body acc) I) -> hoare_triple (I (Again init)) (Loop init body) (fun r => I (Done r)) | HtFail : forall {result}, hoare_triple (fun _ => False) (Fail (result := result)) (fun _ _ => False) (* Now the new rules for primitive heap operations: *) | HtRead : forall a R, hoare_triple (exists v, a |-> v * R v)%sep (Read a) (fun r => a |-> r * R r)%sep (* To read from an address, it must be mapped into the address space with some * value. Afterward, that address is known to point to the result value [r]. * An additional *frame* predicate [R] is along for the ride. *) | HtWrite : forall a v', hoare_triple (exists v, a |-> v)%sep (Write a v') (fun _ => a |-> v')%sep (* To write to an address, just show that it's mapped into the address space. * Afterward, that address points to the value we've written. Note that this * rule is in the *small-footprint* style, with no frame predicate baked in. *) | HtAlloc : forall numWords, hoare_triple emp%sep (Alloc numWords) (fun r => r |--> zeroes numWords)%sep (* Allocation works in any memory, transitioning to a state where the result * value points to a sequence of zeroes. *) | HtFree : forall a numWords, hoare_triple (a |->? numWords)%sep (Free a numWords) (fun _ => emp)%sep (* Deallocation requires an argument pointing to the appropriate number of * words, taking us to a state where those addresses are unmapped. *) | HtConsequence : forall {result} (c : cmd result) P Q (P' : hprop) (Q' : _ -> hprop), hoare_triple P c Q -> P' ===> P -> (forall r, Q r ===> Q' r) -> hoare_triple P' c Q' (* This is essentially the same rule of consequence from before. *) | HtFrame : forall {result} (c : cmd result) P Q R, hoare_triple P c Q -> hoare_triple (P * R)%sep c (fun r => Q r * R)%sep. (* The *frame rule* is the other big idea of separation logic. We can extend * any Hoare triple by starring an arbitrary assertion [R] into both * precondition and postcondition. Note that rule [HtRead] built in a variant * of the frame rule, where the frame predicate [R] may depend on the value [v] * being read. The other operations can use this generic frame rule instead. *) Notation "{{ P }} c {{ r ~> Q }}" := (hoare_triple P%sep c (fun r => Q%sep)) (at level 90, c at next level). Lemma HtStrengthen : forall {result} (c : cmd result) P Q (Q' : _ -> hprop), hoare_triple P c Q -> (forall r, Q r ===> Q' r) -> hoare_triple P c Q'. Proof. simplify. eapply HtConsequence; eauto. reflexivity. Qed. Lemma HtWeaken : forall {result} (c : cmd result) P Q (P' : hprop), hoare_triple P c Q -> P' ===> P -> hoare_triple P' c Q. Proof. simplify. eapply HtConsequence; eauto. reflexivity. Qed. (* Now, we carry out a moderately laborious soundness proof! It's safe to skip * ahead to the text "Examples", but a few representative lemma highlights * include [invert_Read], [preservation], [progress], and the main theorem * [hoare_triple_sound]. *) Lemma invert_Return : forall {result : Set} (r : result) P Q, hoare_triple P (Return r) Q -> forall h, P h -> Q r h. Proof. induct 1; propositional; eauto. exists h, $0; propositional; eauto. unfold lift; propositional. unfold himp in *; eauto. unfold star, himp in *; simp; eauto 7. Qed. Local Hint Constructors hoare_triple : core. Lemma invert_Bind : forall {result' result} (c1 : cmd result') (c2 : result' -> cmd result) P Q, hoare_triple P (Bind c1 c2) Q -> exists R, hoare_triple P c1 R /\ forall r, hoare_triple (R r) (c2 r) Q. Proof. induct 1; propositional; eauto. invert IHhoare_triple; propositional. eexists; propositional. eapply HtWeaken. eassumption. auto. eapply HtStrengthen. apply H4. auto. simp. exists (fun r => x r * R)%sep. propositional. eapply HtFrame; eauto. eapply HtFrame; eauto. Qed. Lemma invert_Loop : forall {acc : Set} (init : acc) (body : acc -> cmd (loop_outcome acc)) P Q, hoare_triple P (Loop init body) Q -> exists I, (forall acc, hoare_triple (I (Again acc)) (body acc) I) /\ (forall h, P h -> I (Again init) h) /\ (forall r h, I (Done r) h -> Q r h). Proof. induct 1; propositional; eauto. invert IHhoare_triple; propositional. exists x; propositional; eauto. unfold himp in *; eauto. simp. exists (fun o => x o * R)%sep; propositional; eauto. unfold star in *; simp; eauto 7. unfold star in *; simp; eauto 7. Qed. Lemma invert_Fail : forall result P Q, hoare_triple P (Fail (result := result)) Q -> forall h, P h -> False. Proof. induct 1; propositional; eauto. unfold star in *; simp; eauto. Qed. (* Now that we proved enough basic facts, let's hide the definitions of all * these predicates, so that we reason about them only through automation. *) Opaque heq himp lift star exis ptsto. Lemma unit_not_nat : unit = nat -> False. Proof. simplify. assert (exists x : unit, forall y : unit, x = y). exists tt; simplify. cases y; reflexivity. rewrite H in H0. invert H0. specialize (H1 (S x)). linear_arithmetic. Qed. Lemma invert_Read : forall a P Q, hoare_triple P (Read a) Q -> exists R, (P ===> exists v, a |-> v * R v)%sep /\ forall r, a |-> r * R r ===> Q r. Proof. induct 1; simp; eauto. exists R; simp. cancel; auto. cancel; auto. apply unit_not_nat in x0; simp. apply unit_not_nat in x0; simp. eauto 7 using himp_trans. exists (fun n => x n * R)%sep; simp. rewrite H1. cancel. rewrite <- H2. cancel. Qed. Lemma invert_Write : forall a v' P Q, hoare_triple P (Write a v') Q -> exists R, (P ===> (exists v, a |-> v) * R)%sep /\ a |-> v' * R ===> Q tt. Proof. induct 1; simp; eauto. symmetry in x0. apply unit_not_nat in x0; simp. exists emp; simp. cancel; auto. cancel; auto. symmetry in x0. apply unit_not_nat in x0; simp. eauto 7 using himp_trans. exists (x * R)%sep; simp. rewrite H1. cancel. cancel. rewrite <- H2. cancel. Qed. Lemma invert_Alloc : forall numWords P Q, hoare_triple P (Alloc numWords) Q -> forall r, P * r |--> zeroes numWords ===> Q r. Proof. induct 1; simp; eauto. apply unit_not_nat in x0; simp. cancel. apply unit_not_nat in x0; simp. rewrite H0. eauto using himp_trans. rewrite <- IHhoare_triple. cancel. Qed. (* Temporarily transparent again! *) Transparent heq himp lift star exis ptsto. Lemma zeroes_initialize' : forall h a v, h $? a = None -> (fun h' : heap => h' = h $+ (a, v)) ===> (fun h' => h' = h) * a |-> v. Proof. unfold himp, star, split, ptsto, disjoint; simp. exists h, (heap1 a v). propositional. maps_equal. unfold heap1. rewrite lookup_join2. simp. simp. apply lookup_None_dom in H. propositional. cases (h $? k). rewrite lookup_join1; auto. eauto using lookup_Some_dom. rewrite lookup_join2; auto. unfold heap1; simp. eauto using lookup_None_dom. unfold heap1 in *. cases (a ==n a0); simp. Qed. (* Opaque again! *) Opaque heq himp lift star exis ptsto. Lemma multi_ptsto_app : forall ls2 ls1 a, a |--> ls1 * (a + length ls1) |--> ls2 ===> a |--> (ls1 ++ ls2). Proof. induct ls1; simp; cancel; auto. replace (a + 0) with a by linear_arithmetic. cancel. rewrite <- IHls1. cancel. replace (a0 + 1 + length ls1) with (a0 + S (length ls1)) by linear_arithmetic. cancel. Qed. Lemma length_zeroes : forall n, length (zeroes n) = n. Proof. induct n; simplify; auto. rewrite app_length; simplify. linear_arithmetic. Qed. Lemma initialize_fresh : forall a' h a numWords, a' >= a + numWords -> initialize h a numWords $? a' = h $? a'. Proof. induct numWords; simp; auto. Qed. Lemma zeroes_initialize : forall numWords a h, (forall i, i < numWords -> h $? (a + i) = None) -> (fun h' => h' = initialize h a numWords) ===> (fun h' => h' = h) * a |--> zeroes numWords. Proof. induct numWords; simp. cancel; auto. rewrite <- multi_ptsto_app. rewrite zeroes_initialize'. erewrite IHnumWords. simp. rewrite length_zeroes. cancel; auto. auto. rewrite initialize_fresh; auto. Qed. Lemma invert_Free : forall a numWords P Q, hoare_triple P (Free a numWords) Q -> P ===> a |->? numWords * Q tt. Proof. induct 1; simp; eauto. symmetry in x0. apply unit_not_nat in x0; simp. symmetry in x0. apply unit_not_nat in x0; simp. cancel; auto. rewrite H0. rewrite IHhoare_triple. cancel; auto. rewrite IHhoare_triple. cancel; auto. Qed. (* Temporarily transparent again! *) Transparent heq himp lift star exis ptsto. Lemma do_deallocate' : forall a Q h, ((exists v, a |-> v) * Q)%sep h -> Q (h $- a). Proof. unfold ptsto, star, split, heap1; simp. invert H1. replace ($0 $+ (a, x1) $++ x0 $- a) with x0; auto. maps_equal. cases (k ==n a); simp. specialize (H a). simp. cases (x0 $? a); auto. exfalso; apply H; equality. rewrite lookup_join2; auto. apply lookup_None_dom. simp. Qed. Lemma do_deallocate : forall Q numWords a h, (a |->? numWords * Q)%sep h -> Q (deallocate h a numWords). Proof. induct numWords; simp. unfold star, exis, lift in H; simp. apply split_empty_fwd' in H0; simp. apply IHnumWords. clear IHnumWords. apply do_deallocate'. Opaque heq himp lift star exis ptsto. match goal with | [ H : ?P h |- ?Q h ] => assert (P ===> Q) by cancel end. Transparent himp. apply H0; auto. Opaque himp. Qed. Lemma HtReturn' : forall P {result : Set} (v : result) Q, P ===> Q v -> hoare_triple P (Return v) Q. Proof. simp. eapply HtStrengthen. constructor. simp. cancel. subst. assumption. Qed. (* Temporarily transparent again! *) Transparent heq himp lift star exis ptsto. Lemma preservation : forall {result} (c : cmd result) h c' h', step (h, c) (h', c') -> forall Q, hoare_triple (fun h' => h' = h) c Q -> hoare_triple (fun h'' => h'' = h') c' Q. Proof. induct 1; simplify. apply invert_Bind in H0; simp. eauto. apply invert_Bind in H; simp. specialize (invert_Return H); eauto using HtWeaken. apply invert_Loop in H; simp. econstructor. eapply HtWeaken. eauto. assumption. simp. cases r. apply HtReturn'. unfold himp; simp; eauto. eapply HtStrengthen. eauto. unfold himp; simp; eauto. apply invert_Read in H0; simp. apply HtReturn'. assert ((exists v, a |-> v * x v)%sep h') by auto. unfold exis, star in H1; simp. unfold ptsto in H4; subst. unfold split in H1; subst. unfold heap1 in H. rewrite lookup_join1 in H by (simp; sets). unfold himp; simp. invert H. apply H2. unfold star. exists (heap1 a v), x2; propositional. unfold split; reflexivity. unfold ptsto; reflexivity. apply invert_Write in H0; simp. apply HtReturn'. simp. assert (((exists v : nat, a |-> v) * x)%sep h) by auto. unfold star in H1; simp. invert H4. unfold ptsto in H5; subst. unfold split in H3; subst. unfold heap1 in H. rewrite lookup_join1 in H by (simp; sets). unfold himp; simp. invert H. apply H2. unfold star. exists ($0 $+ (a, v')), x1; propositional. unfold split. unfold heap1. maps_equal. rewrite lookup_join1 by (simp; sets). simp. repeat rewrite lookup_join2 by (simp; sets); reflexivity. unfold disjoint in *; simp. cases (a0 ==n a); simp. apply H1 with (a := a). unfold heap1; simp. equality. assumption. unfold ptsto; reflexivity. apply invert_Alloc with (r := a) in H0. apply HtReturn'. unfold himp; simp. eapply himp_trans in H0; try apply zeroes_initialize. auto. assumption. apply invert_Free in H. assert ((a |->? numWords * Q tt)%sep h) by auto. apply HtReturn'. unfold himp; simp. eapply do_deallocate. eauto. Qed. Lemma deallocate_None : forall a' numWords h a, h $? a' = None -> deallocate h a numWords $? a' = None. Proof. induct numWords; simp. rewrite IHnumWords; simp. cases (a ==n a'); simp. Qed. Lemma preservation_finite : forall {result} (c : cmd result) h c' h' bound, step (h, c) (h', c') -> (forall a, a >= bound -> h $? a = None) -> exists bound', forall a, a >= bound' -> h' $? a = None. Proof. induct 1; simplify; eauto. exists bound; simp. cases (a ==n a0); simp. rewrite H0 in H; equality. auto. exists (max bound (a + numWords)); simp. rewrite initialize_fresh; auto. exists bound; simp. eauto using deallocate_None. Qed. Local Hint Constructors step : core. Lemma progress : forall {result} (c : cmd result) P Q, hoare_triple P c Q -> forall h h1 h2, split h h1 h2 -> disjoint h1 h2 -> P h1 -> (exists bound, forall a, a >= bound -> h $? a = None) -> (exists r, c = Return r) \/ (exists h' c', step (h, c) (h', c')). Proof. induct 1; simp; repeat match goal with | [ H : forall _ h1 _, _ -> _ -> ?P h1 -> _, H' : ?P _ |- _ ] => eapply H in H'; clear H; try eassumption; simp end; eauto. invert H1. right; exists h, (Return x0). constructor. unfold split, ptsto, heap1 in *; simp. unfold star in H2; simp. unfold split in H; simp. rewrite lookup_join1; simp. rewrite lookup_join1; simp. sets. eapply lookup_Some_dom. rewrite lookup_join1; simp. sets. right; exists (h $+ (a, v')), (Return tt). unfold split, exis, ptsto, heap1 in *; simp. econstructor. rewrite lookup_join1; simp. sets. unfold lift in H1; simp. apply split_empty_fwd' in H; simp. right; exists (initialize h2 x numWords), (Return x). constructor. simp; auto. unfold star in H2; simp. apply IHhoare_triple with (h := h) (h1 := x0) (h2 := h2 $++ x1); eauto. unfold split in *; simp. rewrite (@join_comm _ _ h2 x1). apply join_assoc. sets. cases (h2 $? x2). cases (x1 $? x2). specialize (H2 x2). specialize (H1 x2). rewrite lookup_join2 in H1. apply H1; equality. unfold not. simplify. cases (x0 $? x2). exfalso; apply H2; equality. apply lookup_None_dom in Heq1; propositional. apply lookup_None_dom in Heq0; propositional. apply lookup_None_dom in Heq; propositional. unfold split, disjoint in *; simp. cases (h2 $? a). rewrite lookup_join1 in H8. apply H1 with (a := a); auto. rewrite lookup_join1; auto. cases (x0 $? a); try equality. eauto using lookup_Some_dom. eauto using lookup_Some_dom. rewrite lookup_join2 in H8. eapply H2; eassumption. eauto using lookup_None_dom. Qed. Lemma hoare_triple_sound' : forall P {result} (c : cmd result) Q, hoare_triple P c Q -> P $0 -> invariantFor (trsys_of $0 c) (fun p => (exists bound, forall a, a >= bound -> fst p $? a = None) /\ hoare_triple (fun h' => h' = fst p) (snd p) Q). Proof. simplify. apply invariant_induction; simplify. propositional; subst; simplify. exists 0; simp. eapply HtWeaken; eauto. unfold himp; simplify; equality. cases s. cases s'. simp. eauto using preservation_finite. eauto using preservation. Qed. Theorem hoare_triple_sound : forall P {result} (c : cmd result) Q, hoare_triple P c Q -> P $0 -> invariantFor (trsys_of $0 c) (fun p => (exists r, snd p = Return r) \/ (exists p', step p p')). Proof. simplify. eapply invariant_weaken. eapply hoare_triple_sound'; eauto. simp. specialize (progress H3); simplify. specialize (H2 (fst s) (fst s) $0). assert (split (fst s) (fst s) $0) by auto. assert (disjoint (fst s) $0) by auto. assert (exists bound, forall a, a >= bound -> fst s $? a = None) by eauto. cases s; simp; eauto. Qed. (* Fancy theorem to help us rewrite within preconditions and postconditions *) Global Instance hoare_triple_morphism : forall A, Proper (heq ==> eq ==> (eq ==> heq) ==> iff) (@hoare_triple A). Proof. Transparent himp. repeat (hnf; intros). unfold pointwise_relation in *; intuition subst. eapply HtConsequence; eauto. rewrite H; reflexivity. intros. hnf in H1. specialize (H1 r _ eq_refl). rewrite H1; reflexivity. eapply HtConsequence; eauto. rewrite H; reflexivity. intros. hnf in H1. specialize (H1 r _ eq_refl). rewrite H1; reflexivity. Opaque himp. Qed. (** * Examples *) Opaque heq himp lift star exis ptsto. (* Here comes some automation that we won't explain in detail, instead opting to * use examples. *) Theorem use_lemma : forall result P' (c : cmd result) (Q : result -> hprop) P R, hoare_triple P' c Q -> P ===> P' * R -> hoare_triple P c (fun r => Q r * R)%sep. Proof. simp. eapply HtWeaken. eapply HtFrame. eassumption. eauto. Qed. Theorem HtRead' : forall a v, hoare_triple (a |-> v)%sep (Read a) (fun r => a |-> v * [| r = v |])%sep. Proof. simp. apply HtWeaken with (exists r, a |-> r * [| r = v |])%sep. eapply HtStrengthen. apply HtRead. simp. cancel; auto. subst; cancel. Qed. Theorem HtRead'' : forall p P R, P ===> (exists v, p |-> v * R v) -> hoare_triple P (Read p) (fun r => p |-> r * R r)%sep. Proof. simp. eapply HtWeaken. apply HtRead. assumption. Qed. Ltac basic := apply HtReturn' || eapply HtWrite || eapply HtAlloc || eapply HtFree. Ltac step0 := basic || eapply HtBind || (eapply use_lemma; [ basic | cancel; auto ]) || (eapply use_lemma; [ eapply HtRead' | solve [ cancel; auto ] ]) || (eapply HtRead''; solve [ cancel ]) || (eapply HtStrengthen; [ eapply use_lemma; [ basic | cancel; auto ] | ]) || (eapply HtConsequence; [ apply HtFail | .. ]). Ltac step := step0; simp. Ltac ht := simp; repeat step. Ltac conseq := simplify; eapply HtConsequence. Ltac use_IH H := conseq; [ apply H | .. ]; ht. Ltac loop_inv0 Inv := (eapply HtWeaken; [ apply HtLoop with (I := Inv) | .. ]) || (eapply HtConsequence; [ apply HtLoop with (I := Inv) | .. ]). Ltac loop_inv Inv := loop_inv0 Inv; ht. Ltac use H := (eapply use_lemma; [ eapply H | cancel; auto ]) || (eapply HtStrengthen; [ eapply use_lemma; [ eapply H | cancel; auto ] | ]). Ltac heq := intros; apply himp_heq; split. (* That's the end of the largely unexplained automation. Let's prove some * programs! *) (** ** Swapping with two pointers *) Definition swap p q := tmpp <- Read p; tmpq <- Read q; _ <- Write p tmpq; Write q tmpp. (* Looking at the precondition here, note how we no longer work with explicit * functions over heaps. All that is hidden within the assertion language. * Also note that the definition of [*] gives us nonaliasing of [p] and [q] for * free! *) Theorem swap_ok : forall p q a b, {{p |-> a * q |-> b}} swap p q {{_ ~> p |-> b * q |-> a}}. Proof. unfold swap. (* [simp] is our generic simplifier for this file. *) simp. (* We generally just keep calling [step] to advance forward by one atomic * statement. *) step. step. (* We do often want to use [simp] to clean up the goal after [step] infers an * intermediate assertion. *) simp. step. step. simp. step. step. simp. step. (* The [cancel] procedure repeatedly finds matching subformulas on the two * sides of [===>], removing them and recurring, possibly learning the values * of some unification variables each time. *) cancel. subst. cancel. Qed. Opaque swap. (* This command prevents later proofs from peeking inside the implementation of * [swap]. Instead, we only reason about it through [swap_ok]. *) (* Two swaps in a row provide a kind of rotation across three addresses. *) Definition rotate p q r := _ <- swap p q; swap q r. Theorem rotate_ok : forall p q r a b c, {{p |-> a * q |-> b * r |-> c}} rotate p q r {{_ ~> p |-> b * q |-> c * r |-> a}}. Proof. unfold rotate. simp. step. (* Now we invoke our earlier theorem by name. Note that its precondition only * matches a subset of our current precondition. The rest of state is left * alone, which we can prove "for free" by the frame rule. *) use swap_ok. simp. use swap_ok. simp. cancel. Qed. Opaque rotate. (** ** Initializing a fresh object *) Definition init := p <- Alloc 2; _ <- Write p 7; _ <- Write (p+1) 8; Return p. Theorem init_ok : {{emp}} init {{p ~> p |--> [7; 8]}}. Proof. unfold init. simp. step. step. simp. step. step. simp. step. step. simp. step. cancel. Qed. Opaque init. Theorem the_circle_of_life_ok : {{emp}} p <- init; Free p 2 {{_ ~> emp}}. Proof. step. use init_ok. simp. step. cancel. Qed. Theorem ultra_combo_ok : {{emp}} p <- init; _ <- swap p (p+1); Return p {{p ~> p |--> [8; 7]}}. Proof. step. use init_ok. simp. step. use swap_ok. simp. step. cancel. Qed. (** ** In-place reversal of a singly linked list *) (* Let's give a recursive definition of how a linked list should be laid out in * memory. *) Fixpoint linkedList (p : nat) (ls : list nat) := match ls with | nil => [| p = 0 |] (* An empty list is associated with a null pointer and no memory * contents. *) | x :: ls' => [| p <> 0 |] * exists p', p |--> [x; p'] * linkedList p' ls' (* A nonempty list is associated with a nonnull pointer and a two-cell * struct, which points to a further list. *) end%sep. (* The definition of [linkedList] is recursive in the list. Let's also prove * lemmas for simplifying [linkedList] invocations based on values of [p]. *) Theorem linkedList_null : forall ls, linkedList 0 ls === [| ls = nil |]. Proof. (* Tactic [heq] breaks an equivalence into two implications. *) heq; cases ls; cancel. Qed. Theorem linkedList_nonnull : forall {p ls}, p <> 0 -> linkedList p ls === exists x ls' p', [| ls = x :: ls' |] * p |--> [x; p'] * linkedList p' ls'. Proof. heq; cases ls; cancel; match goal with | [ H : _ = _ :: _ |- _ ] => invert H end; cancel. Qed. Local Hint Rewrite <- rev_alt. Local Hint Rewrite rev_involutive. (* Let's hide the definition of [linkedList], so that we *only* reason about it * via the two lemmas we just proved. *) Opaque linkedList. (* In-place linked-list reverse, the "hello world" of separation logic! *) Definition reverse p := pr <- for pr := (p, 0) loop let (p, r) := pr in if p ==n 0 then Return (Done pr) else tmp <- Read (p + 1); _ <- Write (p+1) r; Return (Again (tmp, p)) done; Return (snd pr). (* Helper function to peel away the [Done]/[Again] status of a [loop_outcome] *) Definition valueOf {A} (o : loop_outcome A) := match o with | Done v => v | Again v => v end. Theorem reverse_ok : forall p ls, {{linkedList p ls}} reverse p {{r ~> linkedList r (rev ls)}}. Proof. unfold reverse. simp. step. (* When we reach a loop, we give the invariant with a special tactic. *) loop_inv (fun o => exists ls1 ls2, [| ls = rev_append ls1 ls2 |] * linkedList (fst (valueOf o)) ls2 * linkedList (snd (valueOf o)) ls1 * [| match o with | Done (p, _) => p = 0 | _ => True end |])%sep. cases (a ==n 0); simp. step. cancel. step. (* We use [setoid_rewrite] for rewriting under binders ([exists], in this * case). Note that we also specify hypothesis [n] explicitly, since * [setoid_rewrite] isn't smart enough to infer parameters otherwise. *) setoid_rewrite (linkedList_nonnull n). step. simp. step. step. simp. step. setoid_rewrite (linkedList_nonnull n). cancel. simp. setoid_rewrite linkedList_null. cancel. equality. simp. step. cancel. simp. setoid_rewrite linkedList_null. cancel. simp. cancel. Qed. Opaque reverse. (* ** Calling [reverse] twice, to illustrate the *frame rule* *) Theorem reverse_two_ok : forall p1 ls1 p2 ls2, {{linkedList p1 ls1 * linkedList p2 ls2}} p1 <- reverse p1; p2 <- reverse p2; Return (p1, p2) {{ps ~> linkedList (fst ps) (rev ls1) * linkedList (snd ps) (rev ls2)}}. Proof. simp. step. use reverse_ok. simp. step. use reverse_ok. simp. step. cancel. Qed. (* Note that the intuitive correctness theorem would be *false* for lists * sharing any cells in common! The inherent disjointness of [*] saves us from * worrying about those cases. *) (* ** Computing the length of a linked list *) (* To state a good loop invariant, it will be helpful to define * *list segments* that end with some pointer beside null. *) Fixpoint linkedListSegment (p : nat) (ls : list nat) (q : nat) := match ls with | nil => [| p = q |] | x :: ls' => [| p <> 0 |] * exists p', p |--> [x; p'] * linkedListSegment p' ls' q end%sep. (* Next, two [linkedListSegment] lemmas analogous to those for [linkedList] * above *) Lemma linkedListSegment_empty : forall p ls, linkedList p ls ===> linkedList p ls * linkedListSegment p nil p. Proof. cancel. Qed. Lemma linkedListSegment_append : forall q r x ls p, q <> 0 -> linkedListSegment p ls q * q |--> [x; r] ===> linkedListSegment p (ls ++ x :: nil) r. Proof. induct ls; cancel; auto. subst; cancel. rewrite <- IHls; cancel; auto. Qed. (* One more [linkedList] lemma will be helpful. We'll re-reveal the predicate's * definition to prove the lemma. *) Transparent linkedList. Lemma linkedListSegment_null : forall ls p, linkedListSegment p ls 0 ===> linkedList p ls. Proof. induct ls; cancel; auto. Qed. Opaque linkedList linkedListSegment. (* A few algebraic properties of list operations: *) Local Hint Rewrite <- app_assoc. Local Hint Rewrite app_length app_nil_r. (* We tie a few of them together into this lemma. *) Lemma move_along : forall A (ls : list A) x2 x1 x0 x, ls = x2 ++ x1 -> x1 = x0 :: x -> ls = (x2 ++ [x0]) ++ x. Proof. simp. Qed. Local Hint Resolve move_along : core. Theorem length_ok : forall p ls, {{linkedList p ls}} q_len <- for q_len := (p, 0) loop let (q, len) := q_len in if q ==n 0 then Return (Done q_len) else tmp <- Read (q + 1); Return (Again (tmp, len+1)) done; Return (snd q_len) {{len ~> linkedList p ls * [| len = length ls |]}}. Proof. simp. step. loop_inv (fun o => exists ls1 ls2, [| ls = ls1 ++ ls2 |] * linkedListSegment p ls1 (fst (valueOf o)) * linkedList (fst (valueOf o)) ls2 * [| snd (valueOf o) = length ls1 |] * [| match o with | Done (q, _) => q = 0 /\ ls2 = nil | _ => True end |])%sep. cases (a ==n 0); simp. step. setoid_rewrite linkedList_null. cancel. simp. step. setoid_rewrite (linkedList_nonnull n). step. simp. step. cancel. simp. setoid_rewrite <- linkedListSegment_append. cancel. auto. simp. simp. rewrite linkedListSegment_empty. cancel. simp. step. cancel. simp. rewrite linkedListSegment_null. rewrite linkedList_null. cancel. simp. Qed.