(** Formal Reasoning About Programs * Chapter 20: Session Types * Author: Adam Chlipala * License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *) Require Import Frap FunctionalExtensionality MessagesAndRefinement. Set Implicit Arguments. Set Asymmetric Patterns. (** * Two-Party Session Types *) Module TwoParty. (** ** Defining the type system *) Inductive type := | TSend (ch : channel) (A : Set) (t : A -> type) | TRecv (ch : channel) (A : Set) (t : A -> type) | TDone. Delimit Scope st_scope with st. Bind Scope st_scope with type. Notation "!!! ch ( x : A ) ; k" := (TSend ch (fun x : A => k)%st) (right associativity, at level 45, ch at level 0, x at level 0) : st_scope. Notation "??? ch ( x : A ) ; k" := (TRecv ch (fun x : A => k)%st) (right associativity, at level 45, ch at level 0, x at level 0) : st_scope. Inductive hasty : proc -> type -> Prop := | HtSend : forall ch (A : Set) (v : A) k t, hasty k (t v) -> hasty (Send ch v k) (TSend ch t) | HtRecv : forall ch (A : Set) (k : A -> _) t, (forall v, hasty (k v) (t v)) -> hasty (Recv ch k) (TRecv ch t) | HtDone : hasty Done TDone. (** * Examples of typed processes *) (* Recall our first example from last chapter. *) Definition addN (k : nat) (input output : channel) : proc := ??input(n : nat); !!output(n + k); Done. Ltac hasty := simplify; repeat ((constructor; simplify) || match goal with | [ |- hasty _ (match ?E with _ => _ end) ] => cases E | [ |- hasty (match ?E with _ => _ end) _ ] => cases E end). Theorem addN_typed : forall k input output, hasty (addN k input output) (???input(_ : nat); !!!output(_ : nat); TDone). Proof. hasty. Qed. (** * Complementing types *) Fixpoint complement (t : type) : type := match t with | TSend ch _ t1 => TRecv ch (fun v => complement (t1 v)) | TRecv ch _ t1 => TSend ch (fun v => complement (t1 v)) | TDone => TDone end. Definition add2_client (input output : channel) : proc := !!input(42); ??output(_ : nat); Done. Theorem add2_client_typed : forall input output, hasty (add2_client input output) (complement (???input(_ : nat); !!!output(_ : nat); TDone)). Proof. hasty. Qed. (** ** Example *) Section online_store. Variables request_product in_stock_or_not send_payment_info payment_success add_review : channel. Definition customer (product payment_info : string) := !!request_product(product); ??in_stock_or_not(worked : bool); if worked then !!send_payment_info(payment_info); ??payment_success(worked_again : bool); if worked_again then !!add_review((product, "awesome")); Done else Done else Done. Definition customer_type := (!!!request_product(_ : string); ???in_stock_or_not(worked : bool); if worked then !!!send_payment_info(_ : string); ???payment_success(worked_again : bool); if worked_again then !!!add_review(_ : (string * string)%type); TDone else TDone else TDone)%st. Theorem customer_hasty : forall product payment_info, hasty (customer product payment_info) customer_type. Proof. hasty. Qed. Definition merchant (in_stock payment_checker : string -> bool) := ??request_product(product : string); if in_stock product then !!in_stock_or_not(true); ??send_payment_info(payment_info : string); if payment_checker payment_info then !!payment_success(true); ??add_review(_ : (string * string)%type); Done else !!payment_success(false); Done else !!in_stock_or_not(false); Done. Theorem merchant_hasty : forall in_stock payment_checker, hasty (merchant in_stock payment_checker) (complement customer_type). Proof. hasty. Qed. End online_store. (** * Parallel execution preserves the existence of complementary session types. *) Definition trsys_of pr := {| Initial := {pr}; Step := lstepSilent |}. (* Note: here we force silent steps, so that all channel communication is * internal. *) Hint Constructors hasty. Lemma input_typed : forall pr ch A v pr', lstep pr (Input {| Channel := ch; TypeOf := A; Value := v |}) pr' -> forall t, hasty pr t -> exists k, pr = Recv ch k /\ pr' = k v. Proof. induct 1; invert 1; eauto. Qed. Lemma output_typed : forall pr ch A v pr', lstep pr (Output {| Channel := ch; TypeOf := A; Value := v |}) pr' -> forall t, hasty pr t -> exists k, pr = Send ch v k /\ pr' = k. Proof. induct 1; invert 1; eauto. Qed. Lemma complementarity_forever : forall pr1 pr2 t, hasty pr1 t -> hasty pr2 (complement t) -> invariantFor (trsys_of (pr1 || pr2)) (fun pr => exists pr1' pr2' t', pr = pr1' || pr2' /\ hasty pr1' t' /\ hasty pr2' (complement t')). Proof. simplify. apply invariant_induction; simplify. propositional; subst. eauto 6. clear pr1 pr2 t H H0. first_order; subst. invert H2. invert H6; invert H0. invert H6; invert H1. eapply input_typed in H4; eauto. eapply output_typed in H5; eauto. first_order; subst. invert H0. invert H1. eauto 7. eapply input_typed in H5; eauto. eapply output_typed in H4; eauto. first_order; subst. invert H0. invert H1. eauto 10. Qed. Theorem no_deadlock : forall pr1 pr2 t, hasty pr1 t -> hasty pr2 (complement t) -> invariantFor (trsys_of (pr1 || pr2)) (fun pr => pr = (Done || Done) \/ exists l' pr', lstep pr l' pr'). Proof. simplify. eapply invariant_weaken. eapply complementarity_forever; eauto. clear pr1 pr2 t H H0. simplify; first_order; subst. invert H0; invert H1; simplify; eauto. Unshelve. assumption. Qed. Example online_store_no_deadlock : forall request_product in_stock_or_not send_payment_info payment_success add_review product payment_info in_stock payment_checker, invariantFor (trsys_of (customer request_product in_stock_or_not send_payment_info payment_success add_review product payment_info || merchant request_product in_stock_or_not send_payment_info payment_success add_review in_stock payment_checker)) (fun pr => pr = (Done || Done) \/ exists l' pr', lstep pr l' pr'). Proof. simplify. eapply no_deadlock with (t := customer_type request_product in_stock_or_not send_payment_info payment_success add_review); hasty. Qed. End TwoParty. (** * Multiparty Session Types *) Module Multiparty. (** ** Defining the type system *) Inductive type := | Communicate (ch : channel) (A : Set) (t : A -> type) | TDone. Delimit Scope st_scope with st. Bind Scope st_scope with type. Notation "!!! ch ( x : A ) ; k" := (Communicate ch (fun x : A => k)%st) (right associativity, at level 45, ch at level 0, x at level 0) : st_scope. Section parties. Variable party : Set. Record parties := { Sender : party; Receiver : party }. Variable channels : channel -> parties. Inductive hasty (p : party) : bool -> proc -> type -> Prop := | HtSend : forall ch rr (A : Set) (v : A) k t, channels ch = {| Sender := p; Receiver := rr |} -> rr <> p -> hasty p false k (t v) -> hasty p false (Send ch v k) (Communicate ch t) | HtRecv : forall mayNotSend ch sr (A : Set) (k : A -> _) t (witness : A), channels ch = {| Sender := sr; Receiver := p |} -> sr <> p -> (forall v, hasty p false (k v) (t v)) -> hasty p mayNotSend (Recv ch k) (Communicate ch t) | HtSkip : forall mayNotSend ch sr rr (A : Set) pr (t : A -> _) (witness : A), channels ch = {| Sender := sr; Receiver := rr |} -> sr <> p -> rr <> p -> (forall v, hasty p true pr (t v)) -> hasty p mayNotSend pr (Communicate ch t) | HtDone : forall mayNotSend, hasty p mayNotSend Done TDone. End parties. (** * Parallel execution preserves the existence of complementary session types. *) Definition trsys_of pr := {| Initial := {pr}; Step := lstepSilent |}. Hint Constructors hasty. Lemma hasty_not_Block : forall party (channels: _ -> parties party) p mns ch pr t, hasty channels p mns (BlockChannel ch pr) t -> False. Proof. induct 1; auto. Unshelve. assumption. Qed. Lemma hasty_not_Dup : forall party (channels: _ -> parties party) p mns pr t, hasty channels p mns (Dup pr) t -> False. Proof. induct 1; auto. Unshelve. assumption. Qed. Lemma hasty_not_Par : forall party (channels: _ -> parties party) p mns pr1 pr2 t, hasty channels p mns (pr1 || pr2) t -> False. Proof. induct 1; auto. Unshelve. assumption. Qed. Hint Immediate hasty_not_Block hasty_not_Dup hasty_not_Par. Lemma input_typed' : forall party (channels : _ -> parties party) p mns ch (A : Set) (k : A -> _) t, hasty channels p mns (Recv ch k) t -> exists sr (witness : A), channels ch = {| Sender := sr; Receiver := p |} /\ sr <> p. Proof. induct 1; eauto. Unshelve. assumption. Qed. Lemma input_typed : forall party (channels: _ -> parties party) pr ch A v pr', lstep pr (Input {| Channel := ch; TypeOf := A; Value := v |}) pr' -> forall p mns t, hasty channels p mns pr t -> exists sr k, pr = Recv ch k /\ pr' = k v /\ channels ch = {| Sender := sr; Receiver := p |} /\ sr <> p. Proof. induct 1; simplify; try solve [ exfalso; eauto ]. eapply input_typed' in H. first_order. eauto 6. Qed. Lemma output_typed' : forall party (channels : _ -> parties party) p mns ch (A : Set) (v : A) k t, hasty channels p mns (Send ch v k) t -> exists rr, channels ch = {| Sender := p; Receiver := rr |} /\ rr <> p. Proof. induct 1; eauto. Unshelve. assumption. Qed. Lemma output_typed : forall party (channels: _ -> parties party) pr ch A v pr', lstep pr (Output {| Channel := ch; TypeOf := A; Value := v |}) pr' -> forall p mns t, hasty channels p mns pr t -> exists k, pr = Send ch v k /\ pr' = k. Proof. induct 1; simplify; try solve [ exfalso; eauto ]. eapply output_typed' in H. first_order. eauto. Qed. Inductive typed_multistate party (channels : channel -> parties party) (t : type) : list party -> proc -> Prop := | TmsNil : typed_multistate channels t [] Done | TmsCons : forall p ps pr1 pr2, hasty channels p false pr1 t -> typed_multistate channels t ps pr2 -> typed_multistate channels t (p :: ps) (pr1 || pr2). Hint Constructors typed_multistate. Ltac side := match goal with | [ |- ?E = {| Sender := _; Receiver := _ |} ] => let E' := eval hnf in E in change E with E'; repeat match goal with | [ |- context[if ?E then _ else _] ] => cases E; try (exfalso; equality) end; try (exfalso; equality); repeat match goal with | [ H : NoDup _ |- _ ] => invert H end; simplify; try (exfalso; equality); equality | [ |- _ <> _ ] => equality end. Ltac hasty := simplify; repeat match goal with | [ |- typed_multistate _ _ _ _ ] => econstructor; simplify | [ |- hasty _ _ _ _ _ ] => apply HtDone || (eapply HtSend; [ side | side | ]) || (eapply HtRecv; [ constructor | side | side | simplify ]) || (eapply HtSkip; [ constructor | side | side | side | simplify ]) | [ |- hasty _ _ _ _ (match ?E with _ => _ end) ] => cases E | [ |- hasty _ _ _ (match ?E with _ => _ end) _ ] => cases E end. Lemma no_silent_steps : forall party (channels : _ -> parties party) p mns pr t, hasty channels p mns pr t -> forall pr', lstep pr Silent pr' -> False. Proof. induct 1; invert 1; try solve [ exfalso; eauto ]. Unshelve. assumption. assumption. assumption. assumption. assumption. assumption. Qed. Hint Immediate no_silent_steps. Lemma complementarity_forever_done : forall party (channels : _ -> parties party) pr pr', lstep pr Silent pr' -> forall all_parties, typed_multistate channels TDone all_parties pr -> False. Proof. induct 1; invert 1; eauto. invert H5. invert H. invert H5. invert H. Qed. Lemma mayNotSend_really : forall party (channels : _ -> parties party) p pr t, hasty channels p true pr t -> forall m pr', lstep pr (Output m) pr' -> False. Proof. induct 1; eauto; invert 1. Unshelve. assumption. Qed. Hint Immediate mayNotSend_really. Lemma may_not_output : forall (party : Set) pr pr' ch (A : Set) (v : A), lstep pr (Output {| Channel := ch; Value := v |}) pr' -> forall (channels : _ -> parties party) p t, hasty channels p true pr t -> False. Proof. induct 1; invert 1; simplify; try solve [ exfalso; eauto ]. Unshelve. assumption. assumption. assumption. assumption. Qed. Hint Immediate may_not_output. Lemma output_is_legit : forall (party : Set) pr pr' ch (A : Set) (v : A), lstep pr (Output {| Channel := ch; Value := v |}) pr' -> forall (channels : _ -> parties party) all_parties ch' (A' : Set) (k : A' -> _), typed_multistate channels (Communicate ch' k) all_parties pr -> In (Sender (channels ch')) all_parties. Proof. induct 1; invert 1; simplify; try solve [ exfalso; eauto ]. invert H4. rewrite H3 in *; simplify; eauto. invert H. exfalso; eauto. invert H4. rewrite H3 in *; simplify; eauto. eauto. eauto. Unshelve. assumption. Qed. Lemma output_is_first : forall (party : Set) pr pr' ch (A : Set) (v : A), lstep pr (Output {| Channel := ch; Value := v |}) pr' -> forall (channels : _ -> parties party) all_parties ch' (A' : Set) (k : A' -> _), typed_multistate channels (Communicate ch' k) all_parties pr -> ch' = ch. Proof. induct 1; invert 1; simplify; try solve [ exfalso; eauto ]. invert H4. invert H; auto. invert H. exfalso; eauto. eauto. Unshelve. assumption. Qed. Lemma input_is_legit' : forall (party : Set) pr ch (A : Set) (v : A) (channels : _ -> parties party) p mns t, hasty channels p mns pr t -> forall pr', lstep pr (Input {| Channel := ch; Value := v |}) pr' -> p = Receiver (channels ch). Proof. induct 1; eauto; invert 1. rewrite H; auto. Qed. Lemma input_is_legit : forall (party : Set) pr pr' ch (A : Set) (v : A), lstep pr (Input {| Channel := ch; Value := v |}) pr' -> forall (channels : _ -> parties party) all_parties t, typed_multistate channels t all_parties pr -> In (Receiver (channels ch)) all_parties. Proof. induct 1; invert 1; simplify; try solve [ exfalso; eauto ]. invert H4. invert H. invert H. rewrite H0 in *; simplify; eauto. eapply input_is_legit' in H; eauto. invert H. eauto. Unshelve. assumption. Qed. Lemma absolutely_nobody : forall (party : Set) pr pr', lstep pr Silent pr' -> forall (channels : _ -> parties party) all_parties ch (A : Set) (k : A -> _), typed_multistate channels (Communicate ch k) all_parties pr -> (In (Sender (channels ch)) all_parties -> False) -> (In (Receiver (channels ch)) all_parties -> False) -> False. Proof. induct 1; invert 1; simplify; try solve [ exfalso; eauto ]. invert H4. rewrite H7 in *; simplify; eauto. rewrite H9 in *; simplify; eauto. eapply IHlstep; eauto. invert H5. rewrite H8 in *; simplify; eauto. rewrite H10 in *; simplify; eauto. eapply output_is_legit in H0; eauto. invert H5. rewrite H8 in *; simplify; eauto. rewrite H10 in *; simplify; eauto. eauto. Unshelve. assumption. Qed. Lemma comm_stuck : forall (party : Set) pr pr', lstep pr Silent pr' -> forall (channels : _ -> parties party) all_parties ch (A : Set) (k : A -> _), typed_multistate channels (Communicate ch k) all_parties pr -> (In (Sender (channels ch)) all_parties -> In (Receiver (channels ch)) all_parties -> False) -> False. Proof. induct 1; invert 1; simplify; try solve [ exfalso; eauto ]. invert H5. invert H. invert H. eapply output_is_legit in H0; eauto. rewrite H9 in *; simplify; eauto. rewrite H7 in *; simplify. eapply output_is_first in H0; eauto. subst. eapply input_is_legit' in H; eauto. subst. rewrite H7 in *. simplify. eauto. invert H5. invert H. rewrite H7 in *; simplify. eapply input_is_legit in H0; eauto. rewrite H7 in *; simplify. eauto. invert H. eauto. Unshelve. assumption. assumption. Qed. Lemma hasty_relax : forall party (channels : _ -> parties party) p mns pr t, hasty channels p mns pr t -> hasty channels p false pr t. Proof. induct 1; eauto. Qed. Local Hint Immediate hasty_relax. Lemma complementarity_preserve_unused : forall party (channels : _ -> parties party) pr ch (A : Set) (t : A -> _) all_parties, typed_multistate channels (Communicate ch t) all_parties pr -> ~In (Sender (channels ch)) all_parties -> ~In (Receiver (channels ch)) all_parties -> forall v, typed_multistate channels (t v) all_parties pr. Proof. induct 1; simplify; eauto. invert H. rewrite H6 in *; simplify. equality. rewrite H8 in *; simplify. propositional. rewrite H6 in *; simplify. propositional. eauto. Qed. Lemma hasty_output : forall pr party (channels : _ -> parties party) p mns t, hasty channels p mns pr t -> forall ch (A : Set) (v : A) pr', lstep pr (Output {| Channel := ch; Value := v |}) pr' -> Sender (channels ch) = p. Proof. induct 1; invert 1. rewrite H; auto. eauto. exfalso; eauto. exfalso; eauto. exfalso; eauto. Unshelve. assumption. assumption. assumption. Qed. Lemma complementarity_find_sender : forall party (channels : _ -> parties party) pr ch (A : Set) (v : A) pr', lstep pr (Output {| Channel := ch; Value := v |}) pr' -> forall (t : A -> _) all_parties, typed_multistate channels (Communicate ch t) all_parties pr -> NoDup all_parties -> In (Sender (channels ch)) all_parties -> ~In (Receiver (channels ch)) all_parties -> typed_multistate channels (t v) all_parties pr'. Proof. induct 1; invert 1; simplify; try solve [ exfalso; eauto ]. invert H0. generalize dependent H. invert H4. invert 1. econstructor. eauto. eapply complementarity_preserve_unused; eauto. rewrite H6; assumption. invert 1. rewrite H6 in *; simplify. eapply hasty_output in H; eauto. rewrite H6 in *; simplify. equality. invert H0. invert H4. rewrite H9 in *; simplify. eapply output_is_legit in H5; try eassumption. rewrite H9 in *; simplify. propositional. rewrite H11 in *; simplify. propositional. rewrite H9 in *; simplify. eapply IHlstep in H5; try (eassumption || reflexivity). 2: rewrite H9; simplify; equality. 2: rewrite H9; simplify; equality. eauto. Unshelve. assumption. Qed. Lemma complementarity_find_receiver : forall party (channels : _ -> parties party) pr ch (A : Set) (v : A) pr', lstep pr (Input {| Channel := ch; Value := v |}) pr' -> forall (t : A -> _) all_parties, typed_multistate channels (Communicate ch t) all_parties pr -> NoDup all_parties -> ~In (Sender (channels ch)) all_parties -> In (Receiver (channels ch)) all_parties -> typed_multistate channels (t v) all_parties pr'. Proof. induct 1; invert 1; simplify; try solve [ exfalso; eauto ]. invert H0. generalize dependent H. invert H4. invert 1. invert 1. econstructor. eauto. eapply complementarity_preserve_unused; eauto. rewrite H10; assumption. rewrite H6 in *; simplify. eapply input_is_legit' in H; eauto. rewrite H6 in *; simplify; equality. invert H0. invert H4. rewrite H9 in *; simplify. eapply input_is_legit in H; try eassumption. rewrite H9 in *; simplify. propositional. rewrite H11 in *; simplify. propositional. eapply input_is_legit in H; try eassumption. rewrite H11 in *; simplify. propositional. eapply IHlstep in H5; try (eassumption || reflexivity). 2: rewrite H9 in *; simplify; equality. 2: rewrite H9 in *; simplify; equality. eauto. Unshelve. assumption. Qed. Lemma output_is_legit' : forall party (channels : _ -> parties party) p mns pr t, hasty channels p mns pr t -> forall ch (A : Set) (v : A) pr', lstep pr (Output {| Channel := ch; Value := v |}) pr' -> p = Sender (channels ch). Proof. induct 1; invert 1; simplify; try solve [ exfalso; eauto ]. rewrite H; auto. Unshelve. assumption. assumption. assumption. assumption. Qed. Lemma complementarity_forever' : forall party (channels : _ -> parties party) pr pr', lstep pr Silent pr' -> forall ch (A : Set) (t : A -> _) all_parties, typed_multistate channels (Communicate ch t) all_parties pr -> NoDup all_parties -> In (Sender (channels ch)) all_parties -> In (Receiver (channels ch)) all_parties -> exists v, typed_multistate channels (t v) all_parties pr'. Proof. induct 1; invert 1; simplify; try solve [ exfalso; eauto ]. invert H0. invert H4. rewrite H9 in *; simplify. propositional; try equality. exfalso; eapply comm_stuck; try eassumption. rewrite H9; simplify; eauto. exfalso; eapply comm_stuck; try eassumption. rewrite H11; simplify; eauto. rewrite H9 in *; simplify. apply IHlstep in H5; try assumption. 2: rewrite H9; simplify; equality. 2: rewrite H9; simplify; equality. first_order; eauto. invert H1. generalize dependent H. invert H5. invert 1. invert 1. eexists. econstructor. eauto. eapply complementarity_find_sender; try eassumption. rewrite H11 in *; simplify; equality. rewrite H11 in *; simplify; equality. rewrite H7 in *; simplify. eapply input_is_legit' in H; eauto. eapply output_is_first in H6; try eassumption. subst. rewrite H7 in *; simplify; equality. invert H1. generalize dependent H. invert H5. invert 1. eexists. econstructor. eauto. eapply complementarity_find_receiver; try eassumption. rewrite H7 in *; simplify; equality. rewrite H7 in *; simplify; equality. invert 1. rewrite H7 in *; simplify. exfalso; eauto. Unshelve. assumption. assumption. Qed. Lemma complementarity_forever : forall party (channels : _ -> parties party) all_parties pr t, NoDup all_parties -> (forall p, In p all_parties) -> typed_multistate channels t all_parties pr -> invariantFor (trsys_of pr) (fun pr' => exists t', typed_multistate channels t' all_parties pr'). Proof. simplify. apply invariant_induction; simplify. propositional; subst. eauto. clear pr t H1. first_order. cases x. eapply complementarity_forever' in H1; try eassumption. first_order. eauto. eauto. exfalso; eauto using complementarity_forever_done. Qed. Inductive inert : proc -> Prop := | InertDone : inert Done | InertPar : forall pr1 pr2, inert pr1 -> inert pr2 -> inert (pr1 || pr2). Hint Constructors inert. Lemma typed_multistate_inert : forall party (channels : _ -> parties party) all_parties pr, typed_multistate channels TDone all_parties pr -> inert pr. Proof. induct 1; eauto. invert H; eauto. Qed. Hint Immediate typed_multistate_inert. Lemma deadlock_find_receiver : forall party (channels : _ -> parties party) all_parties ch (A : Set) (k : A -> _) pr, typed_multistate channels (Communicate ch k) all_parties pr -> In (Receiver (channels ch)) all_parties -> forall v : A, exists pr', lstep pr (Input {| Channel := ch; Value := v |}) pr'. Proof. induct 1; simplify; propositional; subst. invert H. rewrite H4 in *; simplify. equality. eauto. rewrite H4 in *; simplify. equality. invert H. rewrite H6 in *; simplify. specialize (H1 v). first_order. eauto. rewrite H8 in *; simplify. eauto. rewrite H6 in *; simplify. specialize (H1 v). first_order. eauto. Qed. Lemma deadlock_find_sender : forall party (channels : _ -> parties party) all_parties ch (A : Set) (k : A -> _) pr, typed_multistate channels (Communicate ch k) all_parties pr -> In (Sender (channels ch)) all_parties -> exists (v : A) pr', lstep pr (Output {| Channel := ch; Value := v |}) pr'. Proof. induct 1; simplify; propositional; subst. invert H. rewrite H4 in *; simplify. eauto. rewrite H6 in *; simplify. equality. rewrite H4 in *; simplify. equality. first_order. invert H. rewrite H6 in *; simplify. eauto. rewrite H8 in *; simplify. eauto. eauto. Qed. Lemma no_deadlock' : forall party (channels : _ -> parties party) all_parties ch (A : Set) (k : A -> _) pr, NoDup all_parties -> typed_multistate channels (Communicate ch k) all_parties pr -> In (Sender (channels ch)) all_parties -> In (Receiver (channels ch)) all_parties -> exists pr', lstep pr Silent pr'. Proof. induct 2; simplify; propositional; subst. invert H0. rewrite H6 in *; simplify. equality. rewrite H8 in *; simplify. equality. rewrite H6 in *; simplify. equality. invert H0. rewrite H6 in *; simplify. eapply deadlock_find_receiver in H1. first_order; eauto. rewrite H6; assumption. rewrite H8 in *; simplify. equality. rewrite H6 in *; simplify. equality. invert H0. rewrite H6 in *; simplify. equality. rewrite H8 in *; simplify. eapply deadlock_find_sender in H1. first_order; eauto. rewrite H8; assumption. rewrite H6 in *; simplify. equality. invert H. apply IHtyped_multistate in H7; auto. first_order; eauto. Qed. Theorem no_deadlock : forall party (channels : _ -> parties party) all_parties pr t, NoDup all_parties -> (forall p, In p all_parties) -> typed_multistate channels t all_parties pr -> invariantFor (trsys_of pr) (fun pr => inert pr \/ exists pr', lstep pr Silent pr'). Proof. simplify. eapply invariant_weaken. eapply complementarity_forever; eassumption. clear pr t H1. simplify; first_order. cases x. right; eapply no_deadlock'; try eassumption; eauto. eauto. Qed. Inductive store_party := Customer | Merchant. Section online_store. Variables request_product in_stock_or_not send_payment_info payment_success add_review : channel. Definition customer (product payment_info : string) := !!request_product(product); ??in_stock_or_not(worked : bool); if worked then !!send_payment_info(payment_info); ??payment_success(worked_again : bool); if worked_again then !!add_review((product, "awesome")); Done else Done else Done. Definition merchant (in_stock payment_checker : string -> bool) := ??request_product(product : string); if in_stock product then !!in_stock_or_not(true); ??send_payment_info(payment_info : string); if payment_checker payment_info then !!payment_success(true); ??add_review(_ : (string * string)%type); Done else !!payment_success(false); Done else !!in_stock_or_not(false); Done. Definition online_store_type := (!!!request_product(_ : string); !!!in_stock_or_not(worked : bool); if worked then !!!send_payment_info(_ : string); !!!payment_success(worked_again : bool); if worked_again then !!!add_review(_ : (string * string)%type); TDone else TDone else TDone)%st. Definition online_store_channels (ch : channel) := if ch ==n request_product then {| Sender := Customer; Receiver := Merchant |} else if ch ==n send_payment_info then {| Sender := Customer; Receiver := Merchant |} else if ch ==n add_review then {| Sender := Customer; Receiver := Merchant |} else {| Sender := Merchant; Receiver := Customer |}. Example online_store_no_deadlock : forall product payment_info in_stock payment_checker, NoDup [request_product; in_stock_or_not; send_payment_info; payment_success; add_review] -> invariantFor (trsys_of (customer product payment_info || (merchant in_stock payment_checker || Done))) (fun pr => inert pr \/ exists pr', lstep pr Silent pr'). Proof. simplify. eapply no_deadlock with (t := online_store_type) (all_parties := [Customer; Merchant]) (channels := online_store_channels); simplify. repeat constructor; simplify; equality. cases p; auto. hasty; constructor. Qed. End online_store. Inductive store_party' := Customer' | Merchant' | Warehouse. Section online_store_with_warehouse. Variables request_product in_stock_or_not send_payment_info payment_success add_review merchant_to_warehouse warehouse_to_merchant : channel. Definition customer' (product payment_info : string) := !!request_product(product); ??in_stock_or_not(worked : bool); if worked then !!send_payment_info(payment_info); ??payment_success(worked_again : bool); if worked_again then !!add_review((product, "awesome")); Done else Done else Done. Definition merchant' (payment_checker : string -> bool) := ??request_product(product : string); !!merchant_to_warehouse(product); ??warehouse_to_merchant(in_stock : bool); if in_stock then !!in_stock_or_not(true); ??send_payment_info(payment_info : string); if payment_checker payment_info then !!payment_success(true); ??add_review(_ : (string * string)%type); Done else !!payment_success(false); Done else !!in_stock_or_not(false); Done. Definition warehouse (in_stock : string -> bool) := ??merchant_to_warehouse(product : string); if in_stock product then !!warehouse_to_merchant(true); Done else !!warehouse_to_merchant(false); Done. Definition online_store_type' := (!!!request_product(_ : string); !!!merchant_to_warehouse(_ : string); !!!warehouse_to_merchant(_ : bool); !!!in_stock_or_not(worked : bool); if worked then !!!send_payment_info(_ : string); !!!payment_success(worked_again : bool); if worked_again then !!!add_review(_ : (string * string)%type); TDone else TDone else TDone)%st. Definition online_store_channels' (ch : channel) := if ch ==n request_product then {| Sender := Customer'; Receiver := Merchant' |} else if ch ==n send_payment_info then {| Sender := Customer'; Receiver := Merchant' |} else if ch ==n add_review then {| Sender := Customer'; Receiver := Merchant' |} else if ch ==n merchant_to_warehouse then {| Sender := Merchant'; Receiver := Warehouse |} else if ch ==n warehouse_to_merchant then {| Sender := Warehouse; Receiver := Merchant' |} else {| Sender := Merchant'; Receiver := Customer' |}. Example online_store_no_deadlock' : forall product payment_info in_stock good_infos, NoDup [request_product; in_stock_or_not; send_payment_info; payment_success; add_review; merchant_to_warehouse; warehouse_to_merchant] -> invariantFor (trsys_of (customer' product payment_info || (merchant' in_stock || (warehouse good_infos || Done)))) (fun pr => inert pr \/ exists pr', lstep pr Silent pr'). Proof. simplify. eapply no_deadlock with (t := online_store_type') (all_parties := [Customer'; Merchant'; Warehouse]) (channels := online_store_channels'); simplify. repeat constructor; simplify; equality. cases p; auto. hasty; constructor. Qed. End online_store_with_warehouse. End Multiparty.