(** Formal Reasoning About Programs * Chapter 5: Model Checking * Author: Adam Chlipala * License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *) Require Import Frap TransitionSystems. Set Implicit Arguments. Definition oneStepClosure_current {state} (sys : trsys state) (invariant1 invariant2 : state -> Prop) := forall st, invariant1 st -> invariant2 st. Definition oneStepClosure_new {state} (sys : trsys state) (invariant1 invariant2 : state -> Prop) := forall st st', invariant1 st -> sys.(Step) st st' -> invariant2 st'. Definition oneStepClosure {state} (sys : trsys state) (invariant1 invariant2 : state -> Prop) := oneStepClosure_current sys invariant1 invariant2 /\ oneStepClosure_new sys invariant1 invariant2. Theorem prove_oneStepClosure : forall state (sys : trsys state) (inv1 inv2 : state -> Prop), (forall st, inv1 st -> inv2 st) -> (forall st st', inv1 st -> sys.(Step) st st' -> inv2 st') -> oneStepClosure sys inv1 inv2. Proof. unfold oneStepClosure. propositional. Qed. Theorem oneStepClosure_done : forall state (sys : trsys state) (invariant : state -> Prop), (forall st, sys.(Initial) st -> invariant st) -> oneStepClosure sys invariant invariant -> invariantFor sys invariant. Proof. unfold oneStepClosure, oneStepClosure_current, oneStepClosure_new. propositional. apply invariant_induction. assumption. simplify. eapply H2. eassumption. assumption. Qed. Inductive multiStepClosure {state} (sys : trsys state) : (state -> Prop) -> (state -> Prop) -> Prop := | MscDone : forall inv, oneStepClosure sys inv inv -> multiStepClosure sys inv inv | MscStep : forall inv inv' inv'', oneStepClosure sys inv inv' -> multiStepClosure sys inv' inv'' -> multiStepClosure sys inv inv''. Lemma multiStepClosure_ok' : forall state (sys : trsys state) (inv inv' : state -> Prop), multiStepClosure sys inv inv' -> (forall st, sys.(Initial) st -> inv st) -> invariantFor sys inv'. Proof. induct 1; simplify. apply oneStepClosure_done. assumption. assumption. apply IHmultiStepClosure. simplify. unfold oneStepClosure, oneStepClosure_current in *. (* <-- *) propositional. apply H3. apply H1. assumption. Qed. Theorem multiStepClosure_ok : forall state (sys : trsys state) (inv : state -> Prop), multiStepClosure sys sys.(Initial) inv -> invariantFor sys inv. Proof. simplify. eapply multiStepClosure_ok'. eassumption. propositional. Qed. Theorem oneStepClosure_empty : forall state (sys : trsys state), oneStepClosure sys (constant nil) (constant nil). Proof. unfold oneStepClosure, oneStepClosure_current, oneStepClosure_new; propositional. Qed. Theorem oneStepClosure_split : forall state (sys : trsys state) st sts (inv1 inv2 : state -> Prop), (forall st', sys.(Step) st st' -> inv1 st') -> oneStepClosure sys (constant sts) inv2 -> oneStepClosure sys (constant (st :: sts)) ({st} \cup inv1 \cup inv2). Proof. unfold oneStepClosure, oneStepClosure_current, oneStepClosure_new; propositional. invert H0. left. left. simplify. propositional. right. apply H1. assumption. simplify. propositional. left. right. apply H. equality. right. eapply H2. eassumption. assumption. Qed. Definition fact_correct (original_input : nat) (st : fact_state) : Prop := match st with | AnswerIs ans => fact original_input = ans | WithAccumulator _ _ => True end. Theorem fact_init_is : forall original_input, fact_init original_input = {WithAccumulator original_input 1}. Proof. simplify. apply sets_equal; simplify. propositional. invert H. equality. rewrite <- H0. constructor. Qed. Theorem singleton_in : forall {A} (x : A) rest, ({x} \cup rest) x. Proof. simplify. left. simplify. equality. Qed. Theorem singleton_in_other : forall {A} (x : A) (s1 s2 : set A), s2 x -> (s1 \cup s2) x. Proof. simplify. right. assumption. Qed. Theorem factorial_ok_2 : invariantFor (factorial_sys 2) (fact_correct 2). Proof. simplify. eapply invariant_weaken. apply multiStepClosure_ok. simplify. rewrite fact_init_is. eapply MscStep. apply oneStepClosure_split; simplify. invert H; simplify. apply singleton_in. apply oneStepClosure_empty. simplify. eapply MscStep. apply oneStepClosure_split; simplify. invert H; simplify. apply singleton_in. apply oneStepClosure_split; simplify. invert H; simplify. apply singleton_in. apply oneStepClosure_empty. simplify. eapply MscStep. apply oneStepClosure_split; simplify. invert H; simplify. apply singleton_in. apply oneStepClosure_split; simplify. invert H; simplify. apply singleton_in. apply oneStepClosure_split; simplify. invert H; simplify. apply singleton_in. apply oneStepClosure_empty. simplify. apply MscDone. apply prove_oneStepClosure; simplify. propositional. propositional; invert H0; try equality. invert H; equality. invert H1; equality. simplify. propositional; subst; simplify; propositional. (* ^-- *) Qed. Hint Rewrite fact_init_is. Ltac model_check_done := apply MscDone; apply prove_oneStepClosure; simplify; propositional; subst; repeat match goal with | [ H : _ |- _ ] => invert H end; simplify; equality. Ltac singletoner := repeat match goal with | _ => apply singleton_in | [ |- (_ \cup _) _ ] => apply singleton_in_other end. Ltac model_check_step := eapply MscStep; [ repeat ((apply oneStepClosure_empty; simplify) || (apply oneStepClosure_split; [ simplify; repeat match goal with | [ H : _ |- _ ] => invert H; try congruence end; solve [ singletoner ] | ])) | simplify ]. Ltac model_check_steps1 := model_check_done || model_check_step. Ltac model_check_steps := repeat model_check_steps1. Ltac model_check_finish := simplify; propositional; subst; simplify; equality. Ltac model_check_infer := apply multiStepClosure_ok; simplify; model_check_steps. Ltac model_check_find_invariant := simplify; eapply invariant_weaken; [ model_check_infer | ]; cbv beta in *. Ltac model_check := model_check_find_invariant; model_check_finish. Theorem factorial_ok_2_snazzy : invariantFor (factorial_sys 2) (fact_correct 2). Proof. model_check. Qed. Theorem factorial_ok_3 : invariantFor (factorial_sys 3) (fact_correct 3). Proof. model_check. Qed. Theorem factorial_ok_5 : invariantFor (factorial_sys 5) (fact_correct 5). Proof. model_check. Qed. (** * Abstraction *) (* int global = 0; thread() { int local; while (true) { local = global; global = local + 2; } } *) Inductive isEven : nat -> Prop := | EvenO : isEven 0 | EvenSS : forall n, isEven n -> isEven (S (S n)). Inductive add2_thread := | Read | Write (local : nat). Inductive add2_init : threaded_state nat add2_thread -> Prop := | Add2Init : add2_init {| Shared := 0; Private := Read |}. Inductive add2_step : threaded_state nat add2_thread -> threaded_state nat add2_thread -> Prop := | StepRead : forall global, add2_step {| Shared := global; Private := Read |} {| Shared := global; Private := Write global |} | StepWrite : forall global local, add2_step {| Shared := global; Private := Write local |} {| Shared := S (S local); Private := Read |}. Definition add2_sys1 := {| Initial := add2_init; Step := add2_step |}. Definition add2_sys := parallel add2_sys1 add2_sys1. Inductive simulates state1 state2 (R : state1 -> state2 -> Prop) (sys1 : trsys state1) (sys2 : trsys state2) : Prop := | Simulates : (forall st1, sys1.(Initial) st1 -> exists st2, R st1 st2 /\ sys2.(Initial) st2) -> (forall st1 st2, R st1 st2 -> forall st1', sys1.(Step) st1 st1' -> exists st2', R st1' st2' /\ sys2.(Step) st2 st2') -> simulates R sys1 sys2. Inductive invariantViaSimulation state1 state2 (R : state1 -> state2 -> Prop) (inv2 : state2 -> Prop) : state1 -> Prop := | InvariantViaSimulation : forall st1 st2, R st1 st2 -> inv2 st2 -> invariantViaSimulation R inv2 st1. Lemma invariant_simulates' : forall state1 state2 (R : state1 -> state2 -> Prop) (sys1 : trsys state1) (sys2 : trsys state2), (forall st1 st2, R st1 st2 -> forall st1', sys1.(Step) st1 st1' -> exists st2', R st1' st2' /\ sys2.(Step) st2 st2') -> forall st1 st1', sys1.(Step)^* st1 st1' -> forall st2, R st1 st2 -> exists st2', R st1' st2' /\ sys2.(Step)^* st2 st2'. Proof. induct 2. simplify. exists st2. propositional. constructor. simplify. eapply H in H2. first_order. apply IHtrc in H2. first_order. exists x1. propositional. econstructor. eassumption. assumption. assumption. Qed. Theorem invariant_simulates : forall state1 state2 (R : state1 -> state2 -> Prop) (sys1 : trsys state1) (sys2 : trsys state2) (inv2 : state2 -> Prop), simulates R sys1 sys2 -> invariantFor sys2 inv2 -> invariantFor sys1 (invariantViaSimulation R inv2). Proof. simplify. invert H. unfold invariantFor; simplify. apply H1 in H. first_order. apply invariant_simulates' with (sys2 := sys2) (R := R) (st2 := x) in H3; try assumption. first_order. unfold invariantFor in H0. apply H0 with (s' := x0) in H4; try assumption. econstructor. eassumption. assumption. Qed. (* Abstracted program: bool global = true; thread() { bool local; while (true) { local = global; global = local; } } *) Inductive add2_bthread := | BRead | BWrite (local : bool). Inductive add2_binit : threaded_state bool add2_bthread -> Prop := | Add2BInit : add2_binit {| Shared := true; Private := BRead |}. Inductive add2_bstep : threaded_state bool add2_bthread -> threaded_state bool add2_bthread -> Prop := | StepBRead : forall global, add2_bstep {| Shared := global; Private := BRead |} {| Shared := global; Private := BWrite global |} | StepBWrite : forall global local, add2_bstep {| Shared := global; Private := BWrite local |} {| Shared := local; Private := BRead |}. Definition add2_bsys1 := {| Initial := add2_binit; Step := add2_bstep |}. Definition add2_bsys := parallel add2_bsys1 add2_bsys1. Definition add2_correct (st : threaded_state nat (add2_thread * add2_thread)) := isEven st.(Shared). Inductive R_private1 : add2_thread -> add2_bthread -> Prop := | RpRead : R_private1 Read BRead | RpWrite : forall n b, (b = true <-> isEven n) -> R_private1 (Write n) (BWrite b). Inductive add2_R : threaded_state nat (add2_thread * add2_thread) -> threaded_state bool (add2_bthread * add2_bthread) -> Prop := | Add2_R : forall n b th1 th2 th1' th2', (b = true <-> isEven n) -> R_private1 th1 th1' -> R_private1 th2 th2' -> add2_R {| Shared := n; Private := (th1, th2) |} {| Shared := b; Private := (th1', th2') |}. Theorem add2_init_is : parallel1 add2_binit add2_binit = { {| Shared := true; Private := (BRead, BRead) |} }. Proof. simplify. apply sets_equal; simplify. propositional. invert H. invert H2. invert H4. equality. invert H0. constructor. constructor. constructor. Qed. Hint Rewrite add2_init_is. Theorem add2_ok : invariantFor add2_sys add2_correct. Proof. eapply invariant_weaken with (invariant1 := invariantViaSimulation add2_R _). apply invariant_simulates with (sys2 := add2_bsys). constructor; simplify. invert H. invert H0. invert H1. exists {| Shared := true; Private := (BRead, BRead) |}; simplify. propositional. constructor. propositional. constructor. constructor. constructor. invert H. invert H0; simplify. invert H7. invert H2. exists {| Shared := b; Private := (BWrite b, th2') |}. propositional. constructor. propositional. constructor. propositional. assumption. constructor. constructor. invert H2. exists {| Shared := b0; Private := (BRead, th2') |}. propositional. constructor. propositional. constructor. assumption. invert H0. propositional. constructor. assumption. constructor. constructor. invert H7. invert H3. exists {| Shared := b; Private := (th1', BWrite b) |}. propositional. constructor. propositional. assumption. constructor. propositional. constructor. constructor. invert H3. exists {| Shared := b0; Private := (th1', BRead) |}. propositional. constructor. propositional. constructor. assumption. invert H0. propositional. assumption. constructor. constructor. constructor. model_check_infer. invert 1. invert H0. simplify. unfold add2_correct. simplify. propositional; subst. invert H. propositional. invert H1. propositional. invert H. propositional. invert H1. propositional. Qed. (** * Another abstraction example *) (* f(int n) { int i, j; i = 0; j = 0; while (n > 0) { i = i + n; j = j + n; n = n - 1; } } *) Inductive pc := | i_gets_0 | j_gets_0 | Loop | i_add_n | j_add_n | n_sub_1 | Done. Record vars := { N : nat; I : nat; J : nat }. Record state := { Pc : pc; Vars : vars }. Inductive initial : state -> Prop := | Init : forall vs, initial {| Pc := i_gets_0; Vars := vs |}. Inductive step : state -> state -> Prop := | Step_i_gets_0 : forall n i j, step {| Pc := i_gets_0; Vars := {| N := n; I := i; J := j |} |} {| Pc := j_gets_0; Vars := {| N := n; I := 0; J := j |} |} | Step_j_gets_0 : forall n i j, step {| Pc := j_gets_0; Vars := {| N := n; I := i; J := j |} |} {| Pc := Loop; Vars := {| N := n; I := i; J := 0 |} |} | Step_Loop_done : forall i j, step {| Pc := Loop; Vars := {| N := 0; I := i; J := j |} |} {| Pc := Done; Vars := {| N := 0; I := i; J := j |} |} | Step_Loop_enter : forall n i j, step {| Pc := Loop; Vars := {| N := S n; I := i; J := j |} |} {| Pc := i_add_n; Vars := {| N := S n; I := i; J := j |} |} | Step_i_add_n : forall n i j, step {| Pc := i_add_n; Vars := {| N := n; I := i; J := j |} |} {| Pc := j_add_n; Vars := {| N := n; I := i + n; J := j |} |} | Step_j_add_n : forall n i j, step {| Pc := j_add_n; Vars := {| N := n; I := i; J := j |} |} {| Pc := n_sub_1; Vars := {| N := n; I := i; J := j + n |} |} | Step_n_sub_1 : forall n i j, step {| Pc := n_sub_1; Vars := {| N := n; I := i; J := j |} |} {| Pc := Loop; Vars := {| N := n - 1; I := i; J := j |} |}. Definition loopy_sys := {| Initial := initial; Step := step |}. Inductive absvars := Unknown | i_is_0 | i_eq_j | i_eq_j_plus_n. Record absstate := { APc : pc; AVars : absvars }. Inductive absstep : absstate -> absstate -> Prop := | AStep_i_gets_0 : forall vs, absstep {| APc := i_gets_0; AVars := vs |} {| APc := j_gets_0; AVars := i_is_0 |} | AStep_j_gets_0_i_is_0 : absstep {| APc := j_gets_0; AVars := i_is_0 |} {| APc := Loop; AVars := i_eq_j |} | AStep_j_gets_0_Other : forall vs, vs <> i_is_0 -> absstep {| APc := j_gets_0; AVars := vs |} {| APc := Loop; AVars := Unknown |} | AStep_Loop_done : forall vs, absstep {| APc := Loop; AVars := vs |} {| APc := Done; AVars := vs |} | AStep_Loop_enter : forall vs, absstep {| APc := Loop; AVars := vs |} {| APc := i_add_n; AVars := vs |} | AStep_i_add_n_i_eq_j : absstep {| APc := i_add_n; AVars := i_eq_j |} {| APc := j_add_n; AVars := i_eq_j_plus_n |} | AStep_i_add_n_Other : forall vs, vs <> i_eq_j -> absstep {| APc := i_add_n; AVars := vs |} {| APc := j_add_n; AVars := Unknown |} | AStep_j_add_n_i_eq_j_plus_n : absstep {| APc := j_add_n; AVars := i_eq_j_plus_n |} {| APc := n_sub_1; AVars := i_eq_j |} | AStep_j_add_n_i_Other : forall vs, vs <> i_eq_j_plus_n -> absstep {| APc := j_add_n; AVars := vs |} {| APc := n_sub_1; AVars := Unknown |} | AStep_n_sub_1_bad : absstep {| APc := n_sub_1; AVars := i_eq_j_plus_n |} {| APc := Loop; AVars := Unknown |} | AStep_n_sub_1_good : forall vs, vs <> i_eq_j_plus_n -> absstep {| APc := n_sub_1; AVars := vs |} {| APc := Loop; AVars := vs |}. Definition absloopy_sys := {| Initial := { {| APc := i_gets_0; AVars := Unknown |} }; Step := absstep |}. Inductive Rvars : vars -> absvars -> Prop := | Rv_Unknown : forall vs, Rvars vs Unknown | Rv_i_is_0 : forall vs, vs.(I) = 0 -> Rvars vs i_is_0 | Rv_i_eq_j : forall vs, vs.(I) = vs.(J) -> Rvars vs i_eq_j | Rv_i_eq_j_plus_n : forall vs, vs.(I) = vs.(J) + vs.(N) -> Rvars vs i_eq_j_plus_n. Inductive R : state -> absstate -> Prop := | Rcon : forall pc vs avs, Rvars vs avs -> R {| Pc := pc; Vars := vs |} {| APc := pc; AVars := avs |}. Definition loopy_correct (st : state) := st.(Pc) = Done -> st.(Vars).(I) = st.(Vars).(J). Theorem loopy_ok : invariantFor loopy_sys loopy_correct. Proof. eapply invariant_weaken with (invariant1 := invariantViaSimulation R _). apply invariant_simulates with (sys2 := absloopy_sys). constructor; simplify. invert H. exists {| APc := i_gets_0; AVars := Unknown |}. propositional. constructor. constructor. invert H0. invert H. exists {| APc := j_gets_0; AVars := i_is_0 |}. propositional; repeat constructor. invert H. invert H3. exists {| APc := Loop; AVars := Unknown |}; propositional; repeat constructor; equality. exists {| APc := Loop; AVars := i_eq_j |}; propositional; repeat constructor; equality. exists {| APc := Loop; AVars := Unknown |}; propositional; repeat constructor; equality. exists {| APc := Loop; AVars := Unknown |}; propositional; repeat constructor; equality. exists {| APc := Done; AVars := st2.(AVars) |}. invert H; simplify; propositional; repeat constructor; equality. exists {| APc := i_add_n; AVars := st2.(AVars) |}. invert H; simplify; propositional; repeat constructor; equality. invert H. invert H3. exists {| APc := j_add_n; AVars := Unknown |}; repeat constructor; equality. exists {| APc := j_add_n; AVars := Unknown |}; repeat constructor; equality. exists {| APc := j_add_n; AVars := i_eq_j_plus_n |}; repeat constructor; simplify; equality. exists {| APc := j_add_n; AVars := Unknown |}; repeat constructor; equality. invert H. invert H3. exists {| APc := n_sub_1; AVars := Unknown |}; repeat constructor; equality. exists {| APc := n_sub_1; AVars := Unknown |}; repeat constructor; equality. exists {| APc := n_sub_1; AVars := Unknown |}; repeat constructor; equality. exists {| APc := n_sub_1; AVars := i_eq_j |}; repeat constructor; simplify; equality. invert H. invert H3. exists {| APc := Loop; AVars := Unknown |}; propositional; repeat constructor; equality. exists {| APc := Loop; AVars := i_is_0 |}; propositional; repeat constructor; equality. exists {| APc := Loop; AVars := i_eq_j |}; propositional; repeat constructor; equality. exists {| APc := Loop; AVars := Unknown |}; propositional; repeat constructor; equality. model_check_infer. invert 1. invert H0. unfold loopy_correct. simplify. propositional; subst. invert H2. invert H1. invert H2. invert H1. invert H. assumption. invert H2. invert H1. invert H2. Qed. (** * Modularity *) Inductive stepWithInterference shared private (inv : shared -> Prop) (step : threaded_state shared private -> threaded_state shared private -> Prop) : threaded_state shared private -> threaded_state shared private -> Prop := | StepSelf : forall st st', step st st' -> stepWithInterference inv step st st' | StepEnvironment : forall sh pr sh', inv sh' -> stepWithInterference inv step {| Shared := sh; Private := pr |} {| Shared := sh'; Private := pr |}. Definition withInterference shared private (inv : shared -> Prop) (sys : trsys (threaded_state shared private)) : trsys (threaded_state shared private) := {| Initial := sys.(Initial); Step := stepWithInterference inv sys.(Step) |}. Inductive sharedInvariant shared private (inv : shared -> Prop) : threaded_state shared private -> Prop := | SharedInvariant : forall sh pr, inv sh -> sharedInvariant inv {| Shared := sh; Private := pr |}. Theorem withInterference_abstracts : forall shared private (inv : shared -> Prop) (sys : trsys (threaded_state shared private)), simulates (fun st st' => st = st') sys (withInterference inv sys). Proof. simplify. constructor; simplify. exists st1; propositional. exists st1'; propositional. constructor. equality. Qed. Lemma withInterference_parallel1 : forall shared private1 private2 (invs : shared -> Prop) (sys1 : trsys (threaded_state shared private1)) (sys2 : trsys (threaded_state shared private2)) st st', (withInterference invs (parallel sys1 sys2)).(Step)^* st st' -> forall st1 st2, (forall st1', (withInterference invs sys1).(Step)^* st1 st1' -> invs st1'.(Shared)) -> (forall st2', (withInterference invs sys2).(Step)^* st2 st2' -> invs st2'.(Shared)) -> (withInterference invs sys1).(Step)^* st1 {| Shared := st.(Shared); Private := fst st.(Private) |} -> (withInterference invs sys2).(Step)^* st2 {| Shared := st.(Shared); Private := snd st.(Private) |} -> (withInterference invs sys1).(Step)^* st1 {| Shared := st'.(Shared); Private := fst st'.(Private) |}. Proof. induct 1; simplify. assumption. invert H; simplify. invert H5; simplify. apply IHtrc with (st2 := {| Shared := sh'; Private := pr2 |}). simplify. apply H1. assumption. simplify. eapply H2. eapply trc_trans. eassumption. eapply TrcFront. apply StepEnvironment with (sh' := sh'). apply H1 with (st1' := {| Shared := sh'; Private := pr1' |}). eapply trc_trans. eassumption. eapply TrcFront. econstructor. eassumption. constructor. assumption. eapply trc_trans. eassumption. eapply TrcFront. econstructor. eassumption. constructor. constructor. apply IHtrc with (st2 := {| Shared := sh'; Private := pr2' |}). assumption. simplify. apply H2. eapply trc_trans. eassumption. eapply TrcFront. constructor. eassumption. eassumption. eapply trc_trans. eassumption. eapply TrcFront. apply StepEnvironment with (sh' := sh'). apply H2 with (st2' := {| Shared := sh'; Private := pr2' |}). eapply trc_trans. eassumption. eapply TrcFront. econstructor. eassumption. constructor. constructor. constructor. apply IHtrc with (st2 := {| Shared := sh'; Private := snd pr |}). assumption. simplify. eapply H2. eapply trc_trans. eassumption. eapply TrcFront. apply StepEnvironment with (sh' := sh'). assumption. assumption. eapply trc_trans. eassumption. eapply TrcFront. apply StepEnvironment with (sh' := sh'). assumption. constructor. constructor. Qed. Lemma withInterference_parallel2 : forall shared private1 private2 (invs : shared -> Prop) (sys1 : trsys (threaded_state shared private1)) (sys2 : trsys (threaded_state shared private2)) st st', (withInterference invs (parallel sys1 sys2)).(Step)^* st st' -> forall st1 st2, (forall st1', (withInterference invs sys1).(Step)^* st1 st1' -> invs st1'.(Shared)) -> (forall st2', (withInterference invs sys2).(Step)^* st2 st2' -> invs st2'.(Shared)) -> (withInterference invs sys1).(Step)^* st1 {| Shared := st.(Shared); Private := fst st.(Private) |} -> (withInterference invs sys2).(Step)^* st2 {| Shared := st.(Shared); Private := snd st.(Private) |} -> (withInterference invs sys2).(Step)^* st2 {| Shared := st'.(Shared); Private := snd st'.(Private) |}. Proof. induct 1; simplify. assumption. invert H; simplify. invert H5; simplify. apply IHtrc with (st1 := {| Shared := sh'; Private := pr1' |}). simplify. apply H1. eapply trc_trans. eassumption. eapply TrcFront. econstructor. eassumption. assumption. assumption. constructor. eapply trc_trans. eassumption. eapply TrcFront. apply StepEnvironment with (sh' := sh'). apply H1 with (st1' := {| Shared := sh'; Private := pr1' |}). eapply trc_trans. eassumption. eapply TrcFront. econstructor. eassumption. constructor. constructor. apply IHtrc with (st1 := {| Shared := sh'; Private := pr1 |}). simplify. apply H1. eapply trc_trans. eassumption. eapply TrcFront. apply StepEnvironment with (sh' := sh'). apply H2 with (st2' := {| Shared := sh'; Private := pr2' |}). eapply trc_trans. eassumption. eapply TrcFront. constructor. eassumption. constructor. assumption. assumption. constructor. eapply trc_trans. eassumption. eapply TrcFront. constructor. eassumption. constructor. apply IHtrc with (st1 := {| Shared := sh'; Private := fst pr |}). simplify. eapply H1. eapply trc_trans. eassumption. eapply TrcFront. apply StepEnvironment with (sh' := sh'). assumption. assumption. assumption. constructor. eapply trc_trans. eassumption. eapply TrcFront. apply StepEnvironment with (sh' := sh'). assumption. constructor. Qed. Theorem withInterference_parallel : forall shared private1 private2 (invs : shared -> Prop) (sys1 : trsys (threaded_state shared private1)) (sys2 : trsys (threaded_state shared private2)), invariantFor (withInterference invs sys1) (fun st => invs st.(Shared)) -> invariantFor (withInterference invs sys2) (fun st => invs st.(Shared)) -> invariantFor (withInterference invs (parallel sys1 sys2)) (fun st => invs st.(Shared)). Proof. unfold invariantFor. simplify. invert H1. assert ((withInterference invs sys1).(Step)^* {| Shared := sh; Private := pr1 |} {| Shared := s'.(Shared); Private := fst s'.(Private) |}). apply withInterference_parallel1 with (sys2 := sys2) (st := {| Shared := sh; Private := (pr1, pr2) |}) (st2 := {| Shared := sh; Private := pr2 |}); simplify; propositional. apply H in H1; propositional. apply H0 in H1; propositional. constructor. constructor. assert ((withInterference invs sys2).(Step)^* {| Shared := sh; Private := pr2 |} {| Shared := s'.(Shared); Private := snd s'.(Private) |}). apply withInterference_parallel2 with (sys1 := sys1) (st := {| Shared := sh; Private := (pr1, pr2) |}) (st1 := {| Shared := sh; Private := pr1 |}); simplify; propositional. apply H in H5; propositional. apply H0 in H5; propositional. constructor. constructor. apply H in H1; try assumption. Qed. (* int global = 0; f() { int local = 0; while (true) { local = global; local = 3 + local; local = 7 + local; global = local; } } *) Inductive twoadd_pc := ReadIt | Add3 | Add7 | WriteIt. Definition twoadd_initial := { {| Shared := 0; Private := (ReadIt, 0) |} }. Inductive twoadd_step : threaded_state nat (twoadd_pc * nat) -> threaded_state nat (twoadd_pc * nat) -> Prop := | Step_ReadIt : forall g l, twoadd_step {| Shared := g; Private := (ReadIt, l) |} {| Shared := g; Private := (Add3, g) |} | Step_Add3 : forall g l, twoadd_step {| Shared := g; Private := (Add3, l) |} {| Shared := g; Private := (Add7, 3 + l) |} | Step_Add7 : forall g l, twoadd_step {| Shared := g; Private := (Add7, l) |} {| Shared := g; Private := (WriteIt, 7 + l) |} | Step_WriteIt : forall g l, twoadd_step {| Shared := g; Private := (WriteIt, l) |} {| Shared := l; Private := (ReadIt, l) |}. Definition twoadd_sys := {| Initial := twoadd_initial; Step := twoadd_step |}. Definition twoadd_correct private (st : threaded_state nat private) := isEven st.(Shared). Definition twoadd_ainitial := { {| Shared := true; Private := (ReadIt, true) |} }. Inductive twoadd_astep : threaded_state bool (twoadd_pc * bool) -> threaded_state bool (twoadd_pc * bool) -> Prop := | AStep_ReadIt : forall g l, twoadd_astep {| Shared := g; Private := (ReadIt, l) |} {| Shared := g; Private := (Add3, g) |} | AStep_Add3 : forall g l, twoadd_astep {| Shared := g; Private := (Add3, l) |} {| Shared := g; Private := (Add7, negb l) |} | AStep_Add7 : forall g l, twoadd_astep {| Shared := g; Private := (Add7, l) |} {| Shared := g; Private := (WriteIt, negb l) |} | AStep_WriteIt : forall g l, twoadd_astep {| Shared := g; Private := (WriteIt, l) |} {| Shared := l; Private := (ReadIt, l) |} | AStep_Someone_Made_It_Even : forall g pr, twoadd_astep {| Shared := g; Private := pr |} {| Shared := true; Private := pr |}. Definition twoadd_asys := {| Initial := twoadd_ainitial; Step := twoadd_astep |}. Definition even_R (n : nat) (b : bool) := isEven n <-> b = true. Lemma even_R_0 : even_R 0 true. Proof. unfold even_R; propositional. constructor. Qed. Lemma even_R_forward : forall n, isEven n -> even_R n true. Proof. unfold even_R; propositional. Qed. Lemma even_R_backward : forall n, even_R n true -> isEven n. Proof. unfold even_R; propositional. Qed. Lemma even_R_add2 : forall n b, even_R n b -> even_R (S (S n)) b. Proof. unfold even_R; propositional. invert H; propositional. constructor; assumption. Qed. Lemma isEven_decide : forall n, (isEven n /\ ~isEven (S n)) \/ (~isEven n /\ isEven (S n)). Proof. induct n; simplify; propositional. left; propositional. constructor. invert H. right; propositional. constructor; assumption. left; propositional. invert H. propositional. Qed. Lemma even_R_add1 : forall n b, even_R n b -> even_R (S n) (negb b). Proof. unfold even_R; simplify. assert ((isEven n /\ ~isEven (S n)) \/ (~isEven n /\ isEven (S n))). apply isEven_decide. cases b; simplify; propositional. equality. equality. Qed. Inductive twoadd_R : threaded_state nat (twoadd_pc * nat) -> threaded_state bool (twoadd_pc * bool) -> Prop := | Twoadd_R : forall pc gn ln gb lb, even_R gn gb -> even_R ln lb -> twoadd_R {| Shared := gn; Private := (pc, ln) |} {| Shared := gb; Private := (pc, lb) |}. Lemma twoadd_ok : invariantFor (withInterference isEven twoadd_sys) (fun st => isEven (Shared st)). Proof. eapply invariant_weaken. apply invariant_simulates with (sys2 := twoadd_asys) (R := twoadd_R). constructor; simplify. invert H. exists {| Shared := true; Private := (ReadIt, true) |}; propositional. constructor; propositional. apply even_R_0. apply even_R_0. constructor. equality. simplify. propositional. invert H0. invert H1. invert H. exists {| Shared := gb; Private := (Add3, gb) |}; propositional. constructor; propositional. constructor. invert H. exists {| Shared := gb; Private := (Add7, negb lb) |}; propositional. constructor; propositional. apply even_R_add2. apply even_R_add1. assumption. constructor. invert H. exists {| Shared := gb; Private := (WriteIt, negb lb) |}; propositional. constructor; propositional. repeat apply even_R_add2. apply even_R_add1. assumption. constructor. invert H. exists {| Shared := lb; Private := (ReadIt, lb) |}; propositional. constructor; propositional. constructor. invert H. exists {| Shared := true; Private := (pc0, lb) |}; propositional. constructor; propositional. apply even_R_forward. assumption. constructor. model_check_infer. invert 1. invert H0. simplify. propositional. invert H0. apply even_R_backward. assumption. invert H1. apply even_R_backward. assumption. invert H0. apply even_R_backward. assumption. invert H1. apply even_R_backward. assumption. Qed. Theorem twoadd2_ok : invariantFor (parallel twoadd_sys twoadd_sys) (twoadd_correct (private := _)). Proof. eapply invariant_weaken. eapply invariant_simulates. apply withInterference_abstracts. apply withInterference_parallel. apply twoadd_ok. apply twoadd_ok. unfold twoadd_correct. invert 1. assumption. Qed. Ltac twoadd := eapply invariant_weaken; [ eapply invariant_simulates; [ apply withInterference_abstracts | repeat (apply withInterference_parallel || apply twoadd_ok) ] | unfold twoadd_correct; invert 1; assumption ]. Theorem twoadd3_ok : invariantFor (parallel twoadd_sys (parallel twoadd_sys twoadd_sys)) (twoadd_correct (private := _)). Proof. twoadd. Qed. Fixpoint manyadds_state (n : nat) : Type := match n with | O => twoadd_pc * nat | S n' => manyadds_state n' * manyadds_state n' end%type. Fixpoint manyadds (n : nat) : trsys (threaded_state nat (manyadds_state n)) := match n with | O => twoadd_sys | S n' => parallel (manyadds n') (manyadds n') end. Eval simpl in manyadds 0. Eval simpl in manyadds 1. Eval simpl in manyadds 2. Eval simpl in manyadds 3. Theorem twoadd4_ok : invariantFor (manyadds 4) (twoadd_correct (private := _)). Proof. twoadd. Qed. Theorem twoadd6_ok : invariantFor (manyadds 6) (twoadd_correct (private := _)). Proof. twoadd. Qed.