Require Import String Arith Omega Program Sets Relations Map Var Invariant. Export String Arith Sets Relations Map Var Invariant. Require Import List. Export ListNotations. Open Scope string_scope. Ltac inductN n := match goal with | [ |- forall x : ?E, _ ] => match type of E with | Prop => let H := fresh in intro H; match n with | 1 => dependent induction H | S ?n' => inductN n' end | _ => intro; inductN n end end. Ltac induct e := inductN e || dependent induction e. Ltac invert' H := inversion H; clear H; subst. Ltac invertN n := match goal with | [ |- forall x : ?E, _ ] => match type of E with | Prop => let H := fresh in intro H; match n with | 1 => invert' H | S ?n' => invertN n' end | _ => intro; invertN n end end. Ltac invert e := invertN e || invert' e. Ltac invert0 e := invert e; fail. Ltac invert1 e := invert0 e || (invert e; []). Ltac invert2 e := invert1 e || (invert e; [|]). Ltac simplify := simpl in *; intros; try autorewrite with core in *. Ltac linear_arithmetic := intros; repeat match goal with | [ |- context[max ?a ?b] ] => let Heq := fresh "Heq" in destruct (Max.max_spec a b) as [[? Heq] | [? Heq]]; rewrite Heq in *; clear Heq | [ _ : context[max ?a ?b] |- _ ] => let Heq := fresh "Heq" in destruct (Max.max_spec a b) as [[? Heq] | [? Heq]]; rewrite Heq in *; clear Heq | [ |- context[min ?a ?b] ] => let Heq := fresh "Heq" in destruct (Min.min_spec a b) as [[? Heq] | [? Heq]]; rewrite Heq in *; clear Heq | [ _ : context[min ?a ?b] |- _ ] => let Heq := fresh "Heq" in destruct (Min.min_spec a b) as [[? Heq] | [? Heq]]; rewrite Heq in *; clear Heq end; omega. Ltac equality := congruence. Ltac cases E := (is_var E; destruct E) || match type of E with | {_} + {_} => destruct E | _ => let Heq := fresh "Heq" in destruct E eqn:Heq end. Global Opaque max min.