(** Formal Reasoning About Programs * Chapter 5: Model Checking * Author: Adam Chlipala * License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *) Require Import Frap TransitionSystems. Set Implicit Arguments. Definition oneStepClosure_current {state} (sys : trsys state) (invariant1 invariant2 : state -> Prop) := forall st, invariant1 st -> invariant2 st. Definition oneStepClosure_new {state} (sys : trsys state) (invariant1 invariant2 : state -> Prop) := forall st st', invariant1 st -> sys.(Step) st st' -> invariant2 st'. Definition oneStepClosure {state} (sys : trsys state) (invariant1 invariant2 : state -> Prop) := oneStepClosure_current sys invariant1 invariant2 /\ oneStepClosure_new sys invariant1 invariant2. Theorem prove_oneStepClosure : forall state (sys : trsys state) (inv1 inv2 : state -> Prop), (forall st, inv1 st -> inv2 st) -> (forall st st', inv1 st -> sys.(Step) st st' -> inv2 st') -> oneStepClosure sys inv1 inv2. Proof. unfold oneStepClosure. propositional. Qed. Theorem oneStepClosure_done : forall state (sys : trsys state) (invariant : state -> Prop), (forall st, sys.(Initial) st -> invariant st) -> oneStepClosure sys invariant invariant -> invariantFor sys invariant. Proof. unfold oneStepClosure, oneStepClosure_current, oneStepClosure_new. propositional. apply invariant_induction. assumption. simplify. eapply H2. eassumption. assumption. Qed. Inductive multiStepClosure {state} (sys : trsys state) : (state -> Prop) -> (state -> Prop) -> Prop := | MscDone : forall inv, oneStepClosure sys inv inv -> multiStepClosure sys inv inv | MscStep : forall inv inv' inv'', oneStepClosure sys inv inv' -> multiStepClosure sys inv' inv'' -> multiStepClosure sys inv inv''. Lemma multiStepClosure_ok' : forall state (sys : trsys state) (inv inv' : state -> Prop), multiStepClosure sys inv inv' -> (forall st, sys.(Initial) st -> inv st) -> invariantFor sys inv'. Proof. induct 1; simplify. apply oneStepClosure_done. assumption. assumption. apply IHmultiStepClosure. simplify. unfold oneStepClosure, oneStepClosure_current in *. (* <-- *) propositional. apply H3. apply H1. assumption. Qed. Theorem multiStepClosure_ok : forall state (sys : trsys state) (inv : state -> Prop), multiStepClosure sys sys.(Initial) inv -> invariantFor sys inv. Proof. simplify. eapply multiStepClosure_ok'. eassumption. propositional. Qed. Theorem oneStepClosure_empty : forall state (sys : trsys state), oneStepClosure sys (constant nil) (constant nil). Proof. unfold oneStepClosure, oneStepClosure_current, oneStepClosure_new; propositional. Qed. Theorem oneStepClosure_split : forall state (sys : trsys state) st sts (inv1 inv2 : state -> Prop), (forall st', sys.(Step) st st' -> inv1 st') -> oneStepClosure sys (constant sts) inv2 -> oneStepClosure sys (constant (st :: sts)) ({st} \cup inv1 \cup inv2). Proof. unfold oneStepClosure, oneStepClosure_current, oneStepClosure_new; propositional. invert H0. left. left. simplify. propositional. right. apply H1. assumption. simplify. propositional. left. right. apply H. equality. right. eapply H2. eassumption. assumption. Qed. Definition fact_correct (original_input : nat) (st : fact_state) : Prop := match st with | AnswerIs ans => fact original_input = ans | WithAccumulator _ _ => True end. Theorem fact_init_is : forall original_input, fact_init original_input = {WithAccumulator original_input 1}. Proof. simplify. apply sets_equal; simplify. propositional. invert H. equality. rewrite <- H0. constructor. Qed. Theorem singleton_in : forall {A} (x : A), {x} x. Proof. simplify. equality. Qed. Theorem factorial_ok_2 : invariantFor (factorial_sys 2) (fact_correct 2). Proof. simplify. eapply invariantFor_weaken. apply multiStepClosure_ok. simplify. rewrite fact_init_is. eapply MscStep. apply oneStepClosure_split; simplify. invert H; simplify. apply singleton_in. apply oneStepClosure_empty. simplify. eapply MscStep. apply oneStepClosure_split; simplify. invert H; simplify. apply singleton_in. apply oneStepClosure_split; simplify. invert H; simplify. apply singleton_in. apply oneStepClosure_empty. simplify. eapply MscStep. apply oneStepClosure_split; simplify. invert H; simplify. apply singleton_in. apply oneStepClosure_split; simplify. invert H; simplify. apply singleton_in. apply oneStepClosure_split; simplify. invert H; simplify. apply singleton_in. apply oneStepClosure_empty. simplify. apply MscDone. apply prove_oneStepClosure; simplify. propositional. propositional; invert H0; try equality. invert H; equality. invert H1; equality. simplify. propositional; subst; simplify; propositional. (* ^-- *) Qed. Hint Rewrite fact_init_is. Ltac model_check_done := apply MscDone; apply prove_oneStepClosure; simplify; propositional; subst; repeat match goal with | [ H : _ |- _ ] => invert H end; simplify; equality. Ltac model_check_step := eapply MscStep; [ repeat ((apply oneStepClosure_empty; simplify) || (apply oneStepClosure_split; [ simplify; repeat match goal with | [ H : _ |- _ ] => invert H end; apply singleton_in | ])) | simplify ]. Ltac model_check_steps1 := model_check_done || model_check_step. Ltac model_check_steps := repeat model_check_steps1. Ltac model_check_finish := simplify; propositional; subst; simplify; equality. Ltac model_check_find_invariant := simplify; eapply invariantFor_weaken; [ apply multiStepClosure_ok; simplify; model_check_steps | ]. Ltac model_check := model_check_find_invariant; model_check_finish. Theorem factorial_ok_2_snazzy : invariantFor (factorial_sys 2) (fact_correct 2). Proof. model_check. Qed. Theorem factorial_ok_3 : invariantFor (factorial_sys 3) (fact_correct 3). Proof. model_check. Qed. Theorem factorial_ok_4 : invariantFor (factorial_sys 4) (fact_correct 4). Proof. model_check. Qed.